.. _section-A5.7: Appendix 5.7: Detailed Derivation of EQ EM Pump ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The equivalent circuits for the detailed and the simple EM pump models can be reduced to the circuit shown in :numref:`figure-ReducedCircuit`, where :math:`Z_{i}` is the impedance of each component in the path of the total phase current, :math:`I`, being driven by the phase voltage, :math:`V_{s}`. .. _figure-ReducedCircuit: .. figure:: media/ReducedCircuit.png :align: center :figclass: align-center Reduced Equivalent Circuit for the EM pump models. Because the equivalent circuits contain inductors, the circuit's total impedance is a complex number. .. math:: :label: TotalImpedance Z_{T} &= Z_{1} + Z_{2} + Z_{3} \\ &= Re\left( Z_{T} \right) + Im(Z_{T})j \\ &= Re\left( Z_{1} \right) + Re\left( Z_{2} \right) + Re\left( Z_{3} \right) + Im\left( Z_{1} \right)j + Im\left( Z_{2} \right)j + Im\left( Z_{3} \right)j Using the total impedance, the total phase current can be quantified using Ohm's law. .. math:: :label: TotalCurrent I &= \frac{V}{Z_{T}} \\ |I| &= \frac{|V|}{{|Z}_{T}|} \\ |I| &= \frac{|V|}{\sqrt{\text{Re}\left( Z_{T} \right)^{2} + Im\left( Z_{T} \right)^{2}}} The presence of the inductors introduces a phase difference between the phase voltage and current. The phase difference is defined as .. math:: :label: PhaseDifference \tan\left( \phi \right) = \frac{\text{Im}\left( Z_{T} \right)}{Re(Z_{T})} Simple Circuit Analysis '''''''''''''''''''''''''' For the simple EM pump circuit, the impedance of each component is .. math:: :label: SimpleZ1 Z_{1} = R_{1} .. math:: :label: SimpleZ2 Z_{2} = X_{1}j .. math:: :label: SimpleZ3 Z_{3} = \left( \frac{1}{X_{2}j} + \frac{s}{R_{2}} \right)^{- 1} = \frac{R_{2}X_{2}j}{R_{2} + \text{sX}_{2}j} = \frac{sR_{2}X_{2}^{2}}{R_{2}^{2} + s^{2}X_{2}^{2}} + \frac{R_{2}^{2}X_{2}}{R_{2}^{2} + s^{2}X_{2}^{2}}j Using equation :eq:`TotalImpedance` and :eq:`TotalCurrent`, the current as a function of slip, frequency and voltage can be determined. .. math:: :label: SimpleCurrent |I| = \frac{|V|}{\sqrt{\left( R_{1} + \frac{sR_{2}X_{2}^{2}}{R_{2}^{2} + s^{2}X_{2}^{2}} \right)^{2} + \left( X_{1} + \frac{R_{2}^{2}X_{2}}{R_{2}^{2} + s^{2}X_{2}^{2}} \right)^{2}}} The current's dependence on slip is inherent, as :math:`X_{i} = 2\pi L_{i} f`. Ohm's law can be used to determine the division of the total current between the :math:`X_{2}` and :math:`R_{2}/s` branches .. math:: :label: SimpleDivision \left| I \right|\left| Z_{3} \right| = \left| I_{1} \right|\left| X_{2} \right| = \left| I_{2} \right|\frac{R_{2}}{s} Therefore, the power dissipated in :math:`R_{2}/s` can be defined as .. math:: :label: SimplePower P_{R2} &= 3\left| I_{2} \right|\left| V_{R2} \right| \\ &= 3\frac{\left| I_{2} \right|^{2}R_{2}}{s} If we assume that a fraction of the power is lost to the fluid, the mechanical power dissipated in :math:`R_{2}/s` is .. math:: :label: SimpleMechanincal P_{R2} &= 3\frac{\left| I_{2} \right|^{2}R_{2}\left( 1 - s \right)}{s} \\ &= 3\left| I \right|^{2}\left| Z_{3} \right|^{2}\left( 1 - s \right)\frac{R_{2}}{s} \\ &= 3\left| I \right|^{2}\left( \frac{\left| Z_{3} \right|}{\frac{R_{2}}{s}} \right)^{2}\left( 1 - s \right)\frac{R_{2}}{s} \\ &= 3\frac{s^{4}X_{2}^{4} + {s^{2}R}_{2}^{2}X_{2}^{2}}{\left( R_{2}^{2} + s^{2}X_{2}^{2} \right)^{2}}\left( 1 - s \right)\frac{R_{2}}{s}\left| I \right|^{2} \\ &= 3\frac{s^{2}X_{2}^{2}}{\left( R_{2}^{2} + s^{2}X_{2}^{2} \right)}\left( 1 - s \right)\frac{R_{2}}{s}\left| I \right|^{2} \\ &= 3\left| I \right|^{2}\frac{R_{2}(1 - s)}{\text{s}\left( \frac{R_{2}^{2}}{s^{2}X_{2}^{2}} + 1 \right)} Using the relationship between pumping power and pump head, the developed pump head for the simple EM pump model can be described as .. math:: :label: SimpleDeltaP \Delta P_{\text{pump}} &= \frac{P_{R2}}{Q} \\ &= 3\left| I \right|^{2}\frac{R_{2}(1 - s)}{\text{Qs}\left( \frac{R_{2}^{2}}{s^{2}X_{2}^{2}} + 1 \right)} Detailed Circuit Analysis '''''''''''''''''''''''''' For the detailed EM pump circuit, the impedance of each component is .. math:: :label: DetailedZ1 Z_{1} = R_{1} .. math:: :label: DetailedZ2 Z_{2} = X_{1}j .. math:: :label: DetailedZ3 Z_{3} &= \left( \frac{1}{X_{2}j} + \frac{1}{R_{D}} + \frac{1}{R_{J} + R_{m}} \right)^{- 1} \\ &= \frac{\left( R_{J} + R_{M} \right)R_{D}X_{2}j}{\left( R_{J} + R_{m} \right)R_{D} + \left( R_{J} + R_{M} + R_{D} \right)X_{2}j} \\ &= \frac{\left( R_{J} + R_{m} \right)\left( R_{J} + R_{m} + R_{D} \right)R_{D}X_{2}^{2} + \left( R_{J} + R_{m} \right)^{2}R_{D}^{2}X_{2}j}{\left( R_{J} + R_{m} \right)^{2}R_{D}^{2} + \left( R_{J} + R_{m} + R_{D} \right)^{2}X_{2}^{2}} The magnitude of :math:`Z_{3}` is .. math:: :label: DetailedZ3Mag \left| Z_{3} \right|^{2} &= \frac{\left( R_{J} + R_{m} \right)^{2}\left( R_{J} + R_{m} + R_{D} \right)^{2}R_{D}^{2}X_{2}^{4} + \left( R_{J} + R_{m} \right)^{4}R_{D}^{4}X_{2}^{2}}{\left( \left( R_{J} + R_{m} \right)^{2}R_{D}^{2} + \left( R_{J} + R_{m} + R_{D} \right)^{2}X_{2}^{2} \right)^{2}} \\ &= \frac{\left( R_{J} + R_{m} \right)^{2}R_{D}^{2}X_{2}^{2}}{\left( R_{J} + R_{m} \right)^{2}R_{D}^{2} + \left( R_{J} + R_{m} + R_{D} \right)^{2}X_{2}^{2}} Using a similar analysis as was presented for the simple model, the current passing through the fluid is determined to be .. math:: :label: DetailedCurrent \left| I \right|\left| Z_{3} \right| = \left| I_{3} \right|(R_{J} + R_{m}) and the mechanical power delivered to the fluid is .. math:: :label: DetailedMechanincal P_{m} &= 3\left| I_{3} \right|^{2}R_{m} \\ &= 3\frac{\left| I \right|^{2}\left| Z_{3} \right|^{2}}{\left( R_{J} + R_{m} \right)^{2}}R_{m} \\ &= 3I^{2}R_{m}\frac{R_{D}^{2}X_{2}^{2}}{\left( R_{J} + R_{m} \right)^{2}R_{D}^{2} + \left( R_{J} + R_{m} + R_{D} \right)^{2}X_{2}^{2}} Therefore, the developed pump head in the detailed EM pump model is .. math:: :label: DetailedDeltaP \Delta P &= \frac{P_{m}}{Q} \\ &= 3 \frac{I^{2}R_{m}}{Q}\frac{R_{D}^{2}X_{2}^{2}}{\left( R_{J} + R_{m} \right)^{2}R_{D}^{2} + \left( R_{J} + R_{m} + R_{D} \right)^{2}X_{2}^{2}} Simple Circuit Parameters '''''''''''''''''''''''''' In order to determine the resistance and inductance of the different components in the simple EM pump model, measurable quantities are provided at two distinct pump states. The first pump state, referred to as the rated state, provides a pump head, :math:`\Delta P_{R}`, measured flow rate, :math:`Q_{R}`, measured phase voltage, :math:`V_{R}`, measured phase current, :math:`I_{R}`, measured slip, :math:`s_{R}`, measured efficiency, :math:`\eta_{R}`, and measured frequency, :math:`f_{R}`. The second pump state, referred to as the stalled state, provides the pump head at stalled conditions, :math:`\Delta P_{S}`, for the measured frequency and measured phase voltage. :math:`\Delta P_{P,R}` and :math:`\Delta P_{S,R}` are functions of the measured pump head, :math:`\Delta P_{R}`, and measured pump head at stalled conditions, :math:`\Delta P_S`. When IDPOPT = 0, then the user-provided :math:`\Delta P_{R}` and :math:`\Delta P_{S}` *include* pressure changes due to friction losses across the pump. When IDPOPT = 1, then the user-provided :math:`\Delta P_{R}` and :math:`\Delta P_{S}` *do not include* pressure changes due to friction losses across the pump. To solve the initial conditions for the simplified pump model, the following terms are defined. .. math:: :label: StallAdj \Delta P_{P,S} = \Delta P_{S} .. math:: :nowrap: \[ \Delta P_{P,R} = \left\{ \begin{array}{ @{}% no padding l@{\quad}% some padding r@{}% no padding >{{}}r@{}% no padding >{{}}l@{}% no padding } \Delta P_R,&IDPOPT&\neq0 \\ \Delta P_R + \Delta P_{f,R},&IDPOPT&=0 \end{array} \right. \] where :math:`\Delta P_{f,R}` is the frictional pressure drop that occurs within the pump at the rated flow rate and IDPOPT is a user-defined flag. :math:`\Delta P_{f,R}` is internally calculated by SAS4A/SASSYS-1 using the geometry input. In order to determine the 4 circuit parameters and the current at stalled conditions, five equations are required. Ohm's law provides us with two of the five equations: .. math:: :label: ohmsRated \left( \frac{V_{R}}{I_{R}} \right)^{2} = \left| Z_{T}(s = s_{R}) \right|^{2} .. math:: :label: ohmsStalled \left( \frac{V_{R}}{I_{S}} \right)^{2} = \left| Z_{T}(s = 1) \right|^{2} The rated and stall pressures provide an additional two equations: .. math:: :label: PressureRated \Delta P_{P,R} = \frac{3I_{R}^{2}R_{2}}{Av_{s}\left( \frac{R_{2}^{2}}{X_{2}^{2}s_{R}} + s_{R} \right)} .. math:: :label: PressureStalled \Delta P_{P,S} = \frac{3I_{s}^{2}R_{2}}{Av_{s}\left( \frac{R_{2}^{2}}{X_{2}^{2}} + 1 \right)} The final equation comes from the total power dissipated by the pump .. math:: :label: TotalPower1 P_{R} = 3V_{R}I_{R}\cos\left( \phi \right) .. math:: :label: TotalPower2 \cos\left( \phi \right) = \frac{\text{Re}\left( Z_{T}\left( s = s_{R} \right) \right)}{|Z_{T}\left( s = s_{R} \right)|} .. math:: :label: TotalPower3 P_{R} = \frac{\left( \Delta P_{R} \right)Q_{R}}{\eta_{R}} .. math:: :label: TotalPower4 Re\left(Z_T(s=s_R)\right)^2 = \left(\frac{\left( \Delta P_{R} \right)Q_{R}}{3I_R^2\eta_{R}}\right)^2 Note, the synchronous speed of the EM pump can be determined using the definition of slip and the rated conditions .. math:: :label: synchSpeed v_{s}A = \frac{Q_{R}}{1 - s_{R}} Instead of solving the five equations at once, an iterative approach is taken. By assuming a stall current, :eq:`PressureStalled` can be solved .. math:: :label: SolveX2 \frac{R_{2}^{2}}{X_{2}^{2}} = \frac{3I_{s}^{2}R_{2}}{Av_{s}\Delta P_{s}} - 1 and plugged into :eq:`PressureRated`, providing an equation for :math:`R_{2}` .. math:: :label: SolveR2 R_{2} = \frac{\left( \Delta P_{P,R} \right)\left( Av_{s}\frac{\left( s_{R}^{2} - 1 \right)}{s_{R}} \right)}{3I_{R}^{2} - \frac{3I_{S}^{2}}{\Delta P_{P,S}s_{R}}\Delta P_{P,R}} with the value of :math:`R_{2}` known, :math:`X_{2}` can be determined using :eq:`SolveX2` and :eq:`TotalPower4` can be solved to determine the value of :math:`R_{1}` .. math:: :label: SolveR1 R_{1} = \frac{\left( \frac{{\Delta P}_{R}Q_{R}}{3I_{R}^{2}\eta_{R}}\left( R_{2}^{2} + X_{2}^{2}{s_{R}}^{2} \right) - s_{R}R_{2}X_{2}^{2} \right)}{\left( R_{2}^{2} + X_{2}^{2}s_{R}^{2} \right)} With :math:`R_{1}`, :math:`R_{2}`, and :math:`X_{2}` known :eq:`ohmsRated` can be used to determine :math:`X_{1}` .. math:: :label: SolveX1 X_{1} = \left\lbrack \left( \frac{V_{R}}{I_{R}} \right)^{2} - \text{Re}\left( Z_{T}(s = s_{R}) \right)^{2} \right\rbrack^{1/2} - \frac{R_{2}^{2}X_{2}}{\left( R_{2}^{2} + X_{2}^{2}s_{R}^{2} \right)} Finally, :eq:`ohmsStalled` will be solved to determine the error in the stall current. Using error in the stall current, a new stall current will be estimated and :eq:`SolveX2` through :eq:`SolveX1` will be repeated. This process continues until the error in the stall current is within a user defined limit.