.. _section-A5.6: Appendix 5.6: Optional Eulerian Solution for Pipe Temperatures ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As mentioned in :numref:`section-5.4.1`, a Eulerian calculation can be used to speed up the pipe temperature calculation if the coolant moves more than two nodes in a time step. This Eulerian speed-up has only been implemented for flow in the nominal direction; if flow reversal has occurred in a pipe, then the Eulerian calculation is not used. For the Eulerian calculation, :eq:`eq-5.4-1` for the coolant is replaced by .. math:: :label: A5.6-1 \rho_{\text{c}} c_{\text{c}}A_{\text{c}} \frac{\partial \text{T}_{\text{c}}}{\partial \text{t}} + wc_{\text{c}} \frac{\partial \text{T}_{\text{c}}}{\partial \text{z}} = P_{\text{er}} h_{\text{wc} }\left( T_{\text{w}} - T_{\text{c}} \right) + q_c' :eq:`eq-5.4-2` is still used for the wall. Finite differencing of :eq:`A5.6-1` gives .. math:: :label: A5.6-2 \rho_{\text{c}} c_{\text{c}}A_{\text{c}}\left\lbrack \frac{T_{\text{c}6\text{j}} + T_{\text{c}6\text{j} + 1} - T_{\text{c}5\text{j}} - T_{\text{c}5\text{j}+1}}{2\delta t} \right\rbrack \\ + \frac{wc_{\text{c}}}{\Delta z} \left\lbrack \theta_{1} \left( T_{\text{c}5\text{j} + 1} - T_{\text{c}5\text{j}} \right) + \theta_{2}\left( T_{\text{c}6\text{j} + 1} - T_{\text{c}6\text{j}} \right) \right\rbrack = \\ P_{\text{er}} h_{\text{wc}} \left\{ \theta_{1} \left\lbrack T_{\text{w}5\text{j}} - \frac{T_{\text{c}5\text{j}} + T_{\text{c}5\text{j} + 1}}{2} \right\rbrack \\ + \theta_{2} \left\lbrack T_{\text{w}6\text{j}} - \frac{T_{\text{c}6\text{j}} + T_{\text{c}6\text{j} + 1}}{2} \right\rbrack \right\} +q_{cj}' Similarly, finite differencing of :eq:`eq-5.4-2` gives .. math:: :label: A5.6-3 \frac{M_{\text{w}} C_{\text{w}}}{\delta t} \left( T_{\text{w}6\text{j}} - T_{\text{w}5\text{j}} \right) = P_{\text{er}} h_{\text{wc}} \left\lbrack \theta_{1} \left( \frac{T_{\text{c}5\text{j}} + T_{\text{c}5\text{j} + 1}}{2} - T_{\text{w}5\text{j}} \right) \\ + \theta_{2} \left( \frac{T_{\text{c}6\text{j}} + T_{\text{c}6\text{j} + 1}}{2} - T_{\text{w}6\text{j}} \right) \right\rbrack \\ + \left( hA \right)_{\text{snk}} \left( T_{\text{snk}} - \theta_{1} T_{\text{w}5\text{j}} - \theta_{2} T_{\text{w}6\text{j}} \right) + q_{wj}' :eq:`A5.6-3` can be rewritten as .. math:: :label: A5.6-4 T_{\text{w}6\text{j}} = B_{\text{w}0\text{j}} + B_{\text{w}1\text{j}} \left( T_{\text{c}6\text{j}} + T_{\text{c}6\text{j} + 1} \right) where .. math:: :label: A5.6-5 B_{\text{w}1\text{j}} = \frac{P_{\text{er}} h_{\text{wc}} \theta_{2}\delta t}{2 d_{\text{w}}} .. math:: :label: A5.6-6 d_{\text{w}} = M_{\text{w}} C_{\text{w}} + \theta_{2} \delta t \left\lbrack P_{\text{er}} h_{\text{wc}} + \left( hA \right)_{\text{snk}} \right\rbrack and .. math:: :label: A5.6-7 B_{\text{w}0\text{j}} = \left\{ M_{\text{w}} C_{\text{w}} T_{\text{w}5\text{j}} + P_{\text{er}} h_{\text{wc}} \theta_{1} \delta t \left\lbrack \frac{T_{\text{c}5\text{j}} + T_{\text{c}5\text{j} + 1}}{2} - T_{\text{w}5\text{j}} \right\rbrack \\ + \left( hA \right)_{\text{snk}} \delta t \left( T_{\text{snk}} - \theta_{1} T_{\text{w}5\text{j}} \right) + q_{wj}' \delta t \right\} \big/ d_{\text{w}} Similarly, :eq:`A5.6-2` can be rewritten as .. math:: :label: A5.6-8 T_{\text{c}6\text{j} + 1} = B_{\text{c}0\text{j}} + B_{\text{c}1\text{j}} T_{\text{c}6\text{j}} + B_{\text{c}2\text{j}} T_{\text{w}6\text{j}} where .. math:: :label: A5.6-9 B_{\text{c}0\text{j}} = \left\{ \Delta z \rho_{\text{c}} c_{\text{c}} A_{\text{c}} \left( T_{\text{c}5\text{j}} + T_{\text{c5j} + 1} \right) + 2\theta_{1} \delta t w c_{\text{c}} \left( T_{\text{c}5\text{j}} - T_{\text{c}5\text{j} + 1} \right) \\ + 2 \theta_{1} \delta t \Delta z P_{\text{er}} h_{\text{wc}} \left\lbrack T_{\text{w}5\text{j}} - \frac{T_{\text{c}5\text{j}} + T_{\text{c}5\text{j} + 1}}{2} \right\rbrack + 2\delta t \Delta z q_{cj}' \right\} \big/ d_{\text{c}} .. math:: :label: A5.6-10 d_{\text{c}} = \rho_{\text{c}} c_{\text{c}} A_{\text{c}} \Delta z + 2\theta_{2} \delta t \left( wc_{\text{c}} + \frac{P_{\text{er}} h_{\text{wc}}}{2} \Delta z \right) .. math:: :label: A5.6-11 B_{\text{c}1\text{j}} = - \left\{ \rho_{\text{c}} c_{\text{c}} A_{\text{c}} \Delta z + 2\theta_{2} \delta t \left( \frac{P_{\text{er}} h_{\text{wc}}}{2} \Delta z - wc_{\text{c}} \right) \right\} \big/ d_{\text{c}} and .. math:: :label: A5.6-12 B_{\text{c}2\text{j}} = \frac{2\theta_{2} \delta t\Delta z P_{\text{er}} h_{\text{wc}}}{d_{\text{c}}} :eq:`A5.6-4` and :eq:`A5.6-8` can be combined to give .. math:: :label: A5.6-13 T_{\text{c}6\text{j} + 1} = B_{\text{cc}0\text{j}} + B_{\text{cc}1\text{j}} T_{\text{c}6\text{j}} where .. math:: :label: A5.6-14 B_{\text{cc}0\text{j}} = \frac{B_{\text{c}0\text{j}} + B_{\text{c}2\text{j}} B_{\text{w}0\text{j}}}{1 - B_{\text{c}2\text{j}} B_{\text{w}1\text{j}}} and .. math:: :label: A5.6-15 B_{\text{cc}1\text{j}} = \frac{B_{\text{c}1\text{j}} + B_{\text{c}2\text{j}} B_{\text{w}1\text{j}}}{1 - B_{\text{c}2\text{j}} B_{\text{w}1\text{j}}} Note that :math:`B_{\text{cc}0\text{j}}` and :math:`B_{\text{cc}1\text{j}}` can be calculated before the temperatures at the end of the sub-interval are known. The pipe inlet temperature at the end of the step is used to set the first coolant temperature, :math:`T_{\text{c}61}`. The code marches along the pipe, using :eq:`A5.6-13` to calculate :math:`T_{\text{c}6\text{j}+1}` after :math:`T_{\text{c}6\text{j}}` has been calculated. After the coolant temperatures have been calculated, :eq:`A5.6-4` is used to calculate the wall temperatures.