.. _section-12.appendices: Appendices ---------- Derivation of the Expression for the Spatial Derivative of the Liquid Temperature at a Liquid-Vapor Interface ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The derivation of Eq. :ref:`12.5-37 `, the expression for :math:`\frac{\partial T_{l}}{\partial \xi}\big|_{\xi = 0}`, from the general heat conduction equation involves a somewhat lengthy process which will be described in this appendix. The starting point is Eq. :ref:`12.5-34 `, the general heat conduction equation, written as (A12.1‑1) .. _eq-A12.1-1: .. math:: \frac{\partial ^{2} T\left( \xi, t' \right)}{\partial \xi^{2}} + \frac{Q\left( \xi, t' \right)}{k_{l}} = \frac{1}{\alpha}\frac{\partial T \left(\xi,t' \right)}{\partial t'} where the nomenclature is defined in :numref:`section-12.5`. As discussed in :numref:`section-12.5`, the boundary conditions for Eq. :ref:`A12.1-1 ` are :math:`T\left(0, t' \right)` equal to the vapor temperature and :math:`T \left(\xi, t' \right)` finite, while the initial condition is that :math:`T\left( \infty, 0 \right)` is known. If the Laplace transform is applied to Eq. :ref:`A12.1-1 `, the resulting equation is (A12.1‑2) .. _eq-A12.1-2: .. math:: \frac{\partial ^{2} \overline{T} \left( \xi, s \right)}{\partial \xi ^{2}} + \frac{\overline{Q} \left( \xi, s \right)}{k_{l}} = \frac{1}{\alpha}\left(s \overline{T} \left(\xi, s \right) - T\left( \xi, 0 \right) \right) where :math:`\overline{T}` and :math:`\overline{Q}` and are the Laplace transforms of :math:`T` and :math:`Q`, respectively, and :math:`s` is the transform variable. Equation :ref:`A12.1-2 ` will be somewhat easier to work with if the function :math:`g\left( \xi, s \right)` is defined as (A12.1‑3) .. _eq-A12.1-3: .. math:: g\left( \xi, s \right) = -\frac{\overline{Q} \left(\xi, s \right)}{k_{l}}-\frac{T\left( \xi , 0 \right)}{\alpha} so that the transformed equation becomes (A12.1‑4) .. _eq-A12.1-4: .. math:: \frac{\partial ^{2} \overline{T}}{\partial \xi ^{2}} - \frac{s}{\alpha} \overline{T} = g The arguments :math:`\xi` and :math:`s` have been suppressed in Eq. :ref:`A12.1-4 ` for simplicity of notation. Equation :ref:`A12.1-4 ` is a second-order partial differential equation in :math:`\xi`, which can be solved in a straightforward manner. First, one additional notational simplification will be introduced by defining the variable :math:`q` as (A12.1‑5) .. _eq-A12.1-5: .. math:: q = \sqrt{\frac{s}{\alpha}} which gives (A12.1‑6) .. _eq-A12.1-6: .. math:: \frac{\partial^{2} \overline{T}}{\partial \xi^{2}} - q^{2} \overline{T} = g The solution to this equation can be divided into a homogeneous solution :math:`\overline{T}_{h}` and a particular solution :math:`\overline{T}_{p}` (A12.1‑7) .. _eq-A12.1-7: .. math:: \overline{T} = \overline{T}_{h} + \overline{T}_{p} The homogeneous solution is just the solution to the equation (A12.1‑8) .. _eq-A12.1-8: .. math:: \frac{\partial^{2} \overline{T}_{h}}{\partial \xi} - q^{2} \overline{T}_{h} = 0 so that :math:`\overline{T}_h` has the form (A12.1‑9) .. _eq-A12.1-9: .. math:: \overline{T}_{h} = C_{1} \text{exp} \left( q \xi \right) - C_{2} \text{exp} \left(-q \xi \right) where :math:`C_{1}` and :math:`C_{2}` are constants to be determined from the boundary conditions. Finding the functional form of the particular solution is a more complex process than was finding the form of the homogeneous solution. The particular solution satisfies the equation (A12.1‑10) .. _eq-A10.1-10: .. math:: \frac{\partial^{2} \overline{T}_{p}}{\partial \xi^{2}} - q^{2} \overline{T}_{p} = g which can be rewritten as (A12.1‑11) .. _eq-A12.1-11: .. math:: \left( \frac{\partial}{\partial \xi} - q \right) \left(\frac{\partial}{\partial \xi} + q \right) \overline{T}_{p} = g If the function :math:`u` is defined as (A12.1‑12) .. _eq-A12.1-12: .. math:: u = \frac{\partial \overline{T}_p}{\partial \xi} + q \overline{T}_{p} then Eq. :ref:`A12.1-11 ` takes the simpler form (A12.1‑13) .. _eq-A12.1-13: .. math:: \frac{\partial u}{\partial \xi} - qu = g Equation :ref:`A12.1-13 ` is a simple first-order equation which is easily solved. First, multiply the equation by :math:`e^{-q \xi}`: (A12.1‑14) .. _eq-A12.1-14: .. math:: \frac{\partial u}{\partial \xi} e^{-q \xi} - que^{-q \xi} = ge^{-q \xi} which can be written more simply as (A12.1‑15) .. _eq-A12.1-15: .. math:: \frac{\partial}{\partial \xi} \left( u e^{-q \xi} \right) = ge^{-q \xi} Equation :ref:`A12.1-15 ` can then be solved for u by integrating from :math:`0 \text{ to } \xi`, (A12.1‑16) .. _eq-A12.1-16: .. math:: ue^{-q \xi} = \int_{0}^{\xi} ge^{-q \xi'} d\xi' or (A12.1‑17) .. _eq-A12.1-17: .. math:: u = e^{q \xi} \int_{0}^{\xi} ge^{-q \xi'} d\xi' If this expression is substituted into Eq. :ref:`A12.1-12 `, the following equation for the particular solution results: (A12.1‑18) .. _eq-A12.1-18: .. math:: \frac{\partial \overline{T}_{p}}{\partial \xi} + q \overline{T}_{p} = e^{q \xi} \int_{0}^{\xi} ge^{-q \xi'} \partial \xi' Equation :ref:`A12.1-18 ` is solved using the same procedure as was employed to solve Eq. :ref:`A12.1 ` for :math:`u`, only this time, the multiplier is :math:`e^{q \xi}`, giving (A12.1‑19) .. _eq-A12.1-19: .. math:: \frac{\partial}{\partial\xi}\left( \overline{T}_{p}e^{q\xi} \right) = e^{2q\xi}\int_{0}^{\xi}{ge^{- q\xi''}d\xi''} which gives the following expression for :math:`\overline{T}_{p}`: (A12.1‑20) .. _eq-A12.1-20: .. math:: \overline{T}_{p} = e^{- q\xi}\int_{0}^{\xi}e^{2q\xi'}\left( \int_{0}^{\xi'}{ge^{- q\xi'}d\xi''} \right)d\xi'' Using integration by parts, Eq. :ref:`A12.1-20 ` can be modified from a double integral to the difference of two integrals, giving (A12.1‑21) .. _eq-A12.1-21: .. math:: \overline{T}_{p} = e^{q\xi}\int_{0}^{\xi}{\frac{g}{2q}e}^{- q\xi'}d\xi' - e^{- q\xi}\int_{0}^{\xi}{\frac{g}{2q}e}^{q\xi'}d\xi' The Laplace transform of the liquid temperature is then just the sum of the expression for :math:`\overline{T}_{n}` from Eq. :ref:`A12.1-9 ` and that for :math:`\overline{T}_{p}` from Eq. :ref:`A12.1-21 `: (A12.1‑22) .. _eq-A12.1-22: .. math:: \overline{T} = \overline{T}_{h} + \overline{T}_{p} .. math:: = C_{1} \text{exp} \left(q \xi \right) + C_{2} \text{exp}\left(-q \xi \right) + \text{exp}\left( q \xi \right) \int_{0}^{\xi} \frac{g}{2q} \text{exp} \left(-q \xi' \right) d \xi' .. math:: {} - \text{exp}\left(-q \xi \right) \int_{0}^{\xi} \frac{g}{2q} \text{exp} \left(q \xi' \right) d\xi' The constants :math:`C_{1}` and :math:`C_{2}` in Eq. :ref:`A12.1-22 ` can be evaluated by imposing the boundary conditions stated at the beginning of the appendix. The condition at :math:`\xi = 0` gives (A12.1‑23) .. _eq-A12.1-23: .. math:: \overline{T} \left(0 , s \right) = C_{1} + C_{2} while that for :math:`\xi \rightarrow \infty` requires that (A12.1‑24) .. _eq-A12.1-24: .. math:: C_{1} + \int_{0}^{\infty} \frac{g}{2q} \text{exp} \left(-q \xi' \right) d \xi' = 0 If these are applied to Eq. :ref:`A12.1-22 `, the resulting expression for :math:`\overline{T}` is (A12.1‑25) .. _eq-A12.1-25: .. math:: \overline{T}\left(\xi, s \right) = -\text{exp}\left(q \xi \right) \int_{0}^{\infty} \frac{g}{2q}\text{exp} \left( -q \xi' \right) d\xi' + \overline{T}\left(0,s\right) \text{exp} \left(-q \xi \right) .. math:: + \text{exp} \left(-q \xi \right) \int_{0}^{\infty} \frac{g}{2q} \text{exp}\left(-q \xi' \right) d \xi' + \text{exp}\left(q \xi \right) \int_{0}^{\xi} \frac{g}{2q} \text{exp} \left(-q \xi' \right) d\xi' .. math:: - \text{exp}\left( -q \xi \right) \int_{0}^{\xi} \frac{g}{2q} \text{exp} \left(q \xi' \right) d\xi' Taking the derivative of Eq. :ref:`A12.1-25 ` with respect to :math:`\xi` and evaluating the result at :math:`\xi = 0` gives (A12.1‑26) .. _eq-A12.1-26: .. math:: \frac{\partial \overline{T}}{\partial \xi} \bigg|_{\xi = 0} = -q \int_{0}^{\infty} \frac{g}{2q} \text{exp} \left(-q \xi' \right) d \xi' - q \overline{T} \left(0, s \right) .. math:: -q \int_{0}^{\infty} \frac{g}{2q} \text{exp} \left(-q \xi' \right)d\xi' + \frac{g}{2q} - \frac{g}{2q} which, substituting in the functions represented by :math:`q` and :math:`g`, produces (A12.1‑27) .. _eq-A12.1-27: .. math:: \frac{\partial \overline{T}}{\partial \xi} \bigg|_{\xi = 0} = - \overline{T} \left(0, s \right) \sqrt{\frac{s}{\alpha}} + \int_{0}^{\infty} \frac{\overline{Q} \left( \xi', s \right)}{k_{l}} \text{exp} \left(-\xi' \sqrt{\frac{s}{\alpha}} \right) d\xi' .. math:: + \int_{0}^{\infty} \frac{T\left(\xi', 0 \right)}{\alpha} \text{exp} \left(-\xi' \sqrt{\frac{s}{\alpha}} \right) d\xi' All that remains now is to take the inverse Laplace transform of Eq. :ref:`A12.1-27 `. Representing the inverse transform by :math:`L^{-1}`, the necessary inverse transforms are (A12.1‑28) .. _eq-A12.1-28: .. math:: L^{-1} \left[ \frac{\partial \overline{T}}{\partial \xi} \bigg|_{\xi = 0} \right] = \frac{\partial T}{\partial \xi} \bigg|_{\xi = 0} (A12.1‑29) .. _eq-A12.1-29: .. math:: L^{-1} \left[ \overline{T} \left(0, s\right) \sqrt{\frac{s}{\alpha}} \right] = L^{-1} \left[\overline{T} \left(0, s \right) \frac{s}{\sqrt{s \alpha}} \right] .. math:: = L^{-1} \left[s \overline{T} \left(0 , s \right) \frac{1}{\sqrt{\alpha}{\sqrt{s}}} \right] .. math:: = \int_{0}^{t'} \frac{1}{\sqrt{\pi\alpha}} \frac{1}{\sqrt{t'-\tau}} \left( \frac{\partial T(0,\tau)}{\partial\tau} \right) d\tau by convolution (A12.1‑30) .. _eq-A12.1-30: .. math:: L^{-1} \left[ T \left( \xi, 0 \right) \text{exp} \left(-\xi \sqrt{\frac{s}{\alpha}} \right) \right] = T \left( \xi, 0 \right) L^{-1} \left[ \text{exp} \left(- \frac{\xi}{\sqrt{\alpha}} \sqrt{s} \right) \right] .. math:: = T \left(\xi, 0 \right) \frac{\xi}{2 \sqrt{\pi \alpha \left(t' \right)^{3}}} \text{exp} \left( \frac{-\xi^{2}}{4 \alpha t'} \right) (A12.1‑31) .. _eq-A12.1-31: .. math:: L^{-1} \left[ \overline{Q} \left(\xi, s \right) \text{exp} \left(-\xi \sqrt{\frac{s}{\alpha}} \right) \right] = \int_{0}^{t'} Q\left( \xi, \tau \right) \frac{\xi}{2 \sqrt{\pi \alpha \left(t' - \tau \right)^{3}}} \text{exp} \left(-\frac{\xi^{2}}{4\alpha\left(t' - \tau \right)} \right) d\tau The above inverse transforms can be found in any good handbook which lists inverse Laplace transforms. Taking the inverse transform of Eq. :ref:`A12.1-27 ` and using the above expressions for the individual inverse transforms finally produces Eq. :ref:`12.5-37 `: (A12.1‑32) .. _eq-A12.1-32: .. math:: \frac{\partial T \left(t' \right)}{\partial \xi} \bigg|_{\xi = 0} = -\frac{1}{\sqrt{\pi \alpha}} \int_{0}^{t'} \frac{\partial T \left(0, \tau \right)}{\partial \tau} \frac{1}{\sqrt{t' - \tau}} d\tau .. math:: -\frac{T\left(0,0\right)}{\sqrt{\alpha \pi t'}} + \int_{0}^{\infty} d\xi \int_{0}^{t'} \frac{\xi Q \left(\xi, \tau \right) \text{exp} \left[-\frac{\xi^{2}}{4 \alpha \left(t' - \tau \right)} \right]}{2k_{l}\sqrt{\pi \alpha \left(t' - \tau \right)^{3}}} d \tau .. math:: + \int_{0}^{\infty} \frac{T\left( \xi, 0 \right) \xi \text{exp}\left[ -\frac{\xi^{2}} {4 \alpha t'} \right]}{2 \alpha \sqrt{\pi \alpha \left(t' \right)^{3}}} d\xi Gaussian Elimination Solution of Linearized Vapor-Pressure-Gradient Equations ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The series of equations represented by Eq. :ref:`12.6-164 ` is solved as shown in the steps below. Recall that :ref:`initially` :math:`a_{2,J2 - 1} = a_{2,J1} = 1`. .. rubric:: Forward Reduction .. 1. Divide the second equation by :math:`b_{2,J1}`: .. math:: b_{i,J1} \rightarrow b_{i,J1}/b_{2,J1}, i = 1 \dots 4 \quad g_{J1} \rightarrow g_{J1}/b_{2,J1}. 2. Divide the third equation by :math:`c_{2,J1}`: .. math:: c_{i,J1} \rightarrow c_{i,J1}/c_{2,J1}, i = 1 \dots 4 \quad h_{J1} \rightarrow h_{J1}/c_{2,J1} 3. Subtract the first equation from the second: .. math:: b_{i,J1} \rightarrow b_{i,J1} - a_{1,J1} \quad b_{2,J1} \rightarrow 0 \quad g_{J1} \rightarrow g_{J1} - d_{J1} 4. Subtract the first equation from the third: .. math:: c_{1,J1} \rightarrow c_{1,J1} - a_{1,J1} \quad c_{2,J1} \rightarrow 0 \quad h_{J1} \rightarrow h_{J1} - d_{J1} 5. Divide the second equation by :math:`b_{1,J1}`: .. math:: b_{i,J1} \rightarrow b_{i,J1}/b_{1,J1}, i=1 \dots 4 \quad g_{J1} \rightarrow g_{J1}/b_{1,J1} 6. Divide the third equation by :math:`c_{1,J1}`: .. math:: c_{i,J1} \rightarrow c_{i,J1} / c_{1,J1}, i = 1 \dots 4 \quad h_{J1} \rightarrow h_{J1} / c_{1,J1} 7. Subtract the second equation from the third: .. math:: c_{1,J1} \rightarrow 0 \quad c_{3,J1} \rightarrow c_{3,J1} - {\widetilde{b}}_{3,J1} \quad c_{4,J1} \rightarrow c_{4,J1} - {\widetilde{b}}_{4,J1} .. math:: h_{J1} \rightarrow h_{J1} - {\widetilde{g}}_{J1} Repeat Steps 8-15 for :math:`j=J1 + 1, J1 + 2, \dots, J2-1`. Then proceed to Step 16. 8. Divide by :math:`c_{3,j-1}`: .. math:: c_{4,j-1} \rightarrow c_{4,j-1} / c_{3, j-1} \quad c_{3, j-1} \rightarrow 1 \quad h_{j-1} \rightarrow h_{j-1}/c_{3,j-1} \quad \left(c_{1,j-1} = 0 \quad c_{2, j - 1} = 0\right) 9. Divide by :math:`b_{1,j}`: .. math:: b_{i, j} \rightarrow b_{i, j} / b_{1, j}, i = 1 \dots 4 \quad g_{j} \rightarrow g_{j} / b_{1,j} 10. Divide by :math:`c_{1,j}`: .. math:: c_{i,j} \rightarrow c_{i,j} / c_{1,j}, i = 1 \dots 4 \quad h_{j} \rightarrow h_{j} / c_{1,j} 11. Subtract step 8 from step 9: .. math:: b_{2,j} \rightarrow b_{2,j} - c_{4,j-1} \quad b_{1,j} \rightarrow 0 \quad g_{j} \rightarrow g_{j} - h_{j-1} 12. Subtract step 8 from step 10: .. math:: c_{2,j} \rightarrow c_{2,j} - c_{4, j - 1} \quad c_{1, j} \rightarrow 0 \quad h_{j} \rightarrow h_{j} - h_{j - 1} 13. Divide by :math:`b_{2,j}`: .. math:: b_{i,j} \rightarrow b_{i,j} / b_{2, j}, i = 3,4 \quad b_{2,j} \rightarrow 1 \quad g_{j} \rightarrow g_{j} / b_{2,j} 14. Divide by :math:`c_{2,j}`: .. math:: c_{i,j} \rightarrow c_{i,j} / c_{2, j}, i = 3,4 \quad c_{2,j} \rightarrow 1 \quad h_{j} \rightarrow h_{j} / c _{2,j} 15. Subtract step 13 from step 14: .. math:: c_{i,j} \rightarrow c_{i,j} - b_{i,j}, i = 3, 4 \quad c_{2,j} \rightarrow 0 \quad h_{j} \rightarrow h_{j} - g_{j} Continue 16. Divide by :math:`c_{4,J2-1}`: .. math:: c_{3, J2 - 1} \rightarrow c_{3, J2 - 1} / c_{4, J2 - 1} \quad c_{4, J2 - 1} \rightarrow 1 \quad h_{J2 - 1} \rightarrow h_{J2 - 1} / c_{4, J2 - 1} 17. Subtract: .. math:: a_{1, J2 - 1} \rightarrow a_{1, J2 - 1} - c_{3, J2 - 1} \quad a_{2, J2 - 1} \rightarrow 0 \quad d_{J2 - 1} \rightarrow d_{J2 - 1} - h_{J2 - 1} .. rubric:: Back Substitution .. 18. Solve for upper interface pressure: .. math:: \Delta p^{i}(J2) = d_{J2 - 1} /a_{1,J2 - 1} 19. Solve for upper interface flow: .. math:: \Delta W^{i} (J2) = h_{J2 - 1} - c_{3, J2 - 1} \Delta p^{i} (J2) 20. .. math:: \Delta W (J2 - 1) = \widetilde{g}_{J2 - 1} - \widetilde{b}_{3, J2 - 1} \Delta p^{i} (J2) - \widetilde{b}_{4, J2 - 1} \Delta W^{i} (J2) 21. .. math:: \Delta p (J2 - 1) = h_{J2 - 1} - c_{4, J2 - 1} \Delta W (J2 - 1) Do steps 22 and 23 for :math:`j = J2-2, J2-3, \ldots, J1 + 1`. 22. .. math:: \Delta W(j) = g_{j} - b_{3,j} \Delta p(j+1) - b_{4, j} \Delta W(j+1) 23. .. math:: \Delta p(j) = h_{j} - c_{4,j} \Delta W(j) 24. Solve for lower interface pressure: .. math:: \Delta p^{i}(J1) = \widetilde{g}_{J1} - \widetilde{b}_{3, J1} \Delta p(J1+1) - \widetilde{b}_{4, J1} \Delta W(J1+1) 25. Solve for lower interface flow: .. math:: \Delta W^{i}(J1) = d_{J1} - a_{1,J1} \Delta p^{i} (J1)