================================================================================ Appendices ================================================================================ .. _section-A4.1: Appendix 4.1: Steady-State Power Normalization in |SAS| ================================================================================ The power in axial fuel pin segment :math:`I` of channel :math:`J` is given by the expression .. math:: {\text{PSHAPE}}\left( I,J \right)\ \times \ {\text{QMULT}} \times \ {\text{POW}} Here POW is the maximum power of any axial fuel pin segment. QMULT is a multiplier that is equal to one in steady state. :math:`{\text{PSHAPE}}\left( I,J \right)` is the ratio of the power of segment :math:`\left( I,J \right)` to the maximum power of any segment. It is obvious that PSHAPE takes values between zero and one. |SAS| will renormalize the input values of PSHAPE and PRSHAP. This is done is subroutine PNORM. The user needs only supply un-normalized data for these arrays. PNORM will also compute POW from POWTOT or POWTOT from POW according to the value of IPOWOP. Input: .. list-table:: :header-rows: 1 :align: center :widths: 1,4 * - IPOWOP = 0 - Calculate steady-state power in peak axial segment from total reactor power. * - IPOWOP = 1 - Calculate steady-state total reactor power from the peak axial fuel pin segment. * - POWTOT - Total reactor power in steady state. * - POW - Steady-state power in the peak axial pin segment. * - FRPR - Fraction of total reactor power represented by sum of all |SAS| channels. * - NPIN(ICH) - Number of fuel pins in a subassembly of channel ICH. * - NSUBAS(ICH) - Number of subassemblies in channel ICH. * - MZ(ICH) - Number of axial nodes in channel ICH. * - PRSHAP(ICH) - The relative power per *subassembly* in channel ICH. PRSHAP will be normalized by PNORM. * - PSHAPE(I,ICH) - The relative power per axial *pin* segment of axial pin segment I and channel ICH. I = 1, … MZ(ICH). PSHAPE will be normalized by the PNORM routine. Method: The values of PRSHAP get renormalized as RELCHA for all channels: .. math:: {\text{RELCHA}}\left( \text{ICH} \right) = {\text{PRSHAP}}\left( \text{ICH} \right)\ \times \frac{\sum_{\text{I}}{{\text{NSUBAS}}\left( I \right)}}{\sum_{\text{I}}{{\text{PRSHAP}}\left( I \right) \times {\text{NSUBAS}}\left( I \right)}} If we multiply the above equation by :math:`{\text{NSUBAS}}\left( \text{ICH} \right)` and then sum over all channels :math:`\text{ICH}`, we can show that .. math:: \sum_{\text{ICH}}{{\text{RELCHA}}\left( \text{ICH} \right)\ \times \ {\text{NSUBAS}}\left( \text{ICH} \right)} = \sum_{\text{ICH}}{{\text{NSUBAS}}\left( \text{ICH} \right)} Thus, RELCHA is properly normalized. The values of PSHAPE get normalized as RELSHP for each channel: .. math:: {\text{RELSHP}}\left( IZ,ICH \right) = \frac{{\text{PSHAPE}}\left( IZ,ICH \right)}{\sum_{\text{I}}{{\text{PSHAPE}}\left( I,ICH \right)}} If we sum over all axial nodes :math:`\text{IZ}`, we can show that .. math:: \sum_{\text{IZ}}{{\text{RELSHP}}\left( IZ,ICH \right) = 1} Thus, RELSHP is properly normalized. The power of axial pin segment :math:`\left( I,J \right)` is .. math:: {\text{RELSHP}}\left( I,J \right)\ \times \frac{{\text{RELCHA}}\left( J \right)}{{\text{NPIN}}\left( J \right)}\ \times \ \frac{{\text{FRPR}}\ \times \ {\text{POWTOT}}}{\sum_{\text{ICH}}{{\text{NSUBAS}}\left( \text{ICH} \right)}} From the definition of POW we get the equation .. math:: {\text{POW}} = {\left\lbrack {\text{RELSHP}}\left( I,J \right)\ \times \frac{{\text{RELCHA}}\left( J \right)}{{\text{NPIN}}\left( J \right)}\ \right\rbrack \times \ \frac{{\text{FRPR}}\ \times \ {\text{POWTOT}}}{\sum_{\text{ICH}}{{\text{NSUBAS}}\left( \text{ICH} \right)}}} and the unknown POWTOT or POW can be found. Given :math:`I_{\mathrm{\max}}` and :math:`J_{\mathrm{\max}}` to be the indices of the peak power pin segment, we then redefine :math:`{\text{PSHAPE}}\left( I,J \right)` as .. math:: {\text{PSHAPE}}\left( I,J \right) = \frac{{\text{RELSHP}}\left( I,J \right)\ \times \ {\text{RELCHA}}\left( J \right)}{{\text{NPIN}}\left( J \right)} \times \frac{{\text{NPIN}}\left( J_{\mathrm{\max}} \right)}{{\text{RELSHP}}\left( I_{\mathrm{\max}},J_{\mathrm{\max}} \right)\ \times \ {\text{RELCHA}}\left( J_{\mathrm{\max}} \right)} This is the desired form of PSHAPE that is used by the subroutine SHAPE.