.. _section-A9.4: Appendix 9.4: Fuel Swelling and Fission Gas Release Model Parameters ==================================================================== This section provides material properties and the constitutive models used in fuel swelling and fission gas release model. :numref:`table-A9.4-1a` and :numref:`table-A9.4-1b` summarize the parameters. Ref. [9‑10] and Ref. [9‑11] have been utilized to derive the constitutive models. Fission gas diffusion constants are the main fitting constants. *Fission Gas Diffusion Coefficient* The thermal bulk and surface fission gas diffusion coefficients, :math:`D_{fg_b}` and :math:`D_{fg_s}`, are dependent on the phase and irradiation conditions: .. math:: :label: eq144 D_{fg\_ b} = \begin{cases} 10^{- 4}\exp\left( - \frac{52,000} {RT} \right) + \ 4.9810^{- 39}F_{r} & T < T_{\gamma} \\ 10^{- 8}\exp\left( - \frac{28,500}{RT} \right) + 4.9810^{- 39}F_{r} & else \\ \end{cases} .. math:: :label: eq145 D_{fg\_ s} = \begin{cases} 10^{- 1}\exp\left( - \frac{52,000} {RT} \right) + {4.9810^{- 36}F}_{r} & T < T_{\gamma} \\ 10^{- 5}exp\left( - \frac{28,500}{RT} \right) + {4.9810^{- 36}F}_{r} & else \\ \end{cases} where :math:`D_{fg\_ b}` and :math:`D_{fg\_ s}` are the bulk and surface fission gas diffusion coefficients (m\ :sup:`2`/s), respectively, R is the gas constant, 1.987 cal/mol/K, T is the temperature in Kelvin, and :math:`T_{\gamma}` is the phase transition temperature, and :math:`F_{r}` is the fission density rate (fission/m\ :sup:`3`/s). *Bubble Nucleation* Bubble-1 nucleation rate is given as a function of matrix gas concentration and bubble-1 gas atom number as follows: .. math:: :label: eq146 J_{b1,nucl} = {k_{b1nuc}C}_{g}\rho_{g1} Where :math:`k_{b1nuc}` is :math:`10^{- 20}`\ (bub-1/s), :math:`C_{g}` is the matrix gas atom density (atom/m\ :sup:`3`), and :math:`\rho_{g1}` is the constant atom number per bubble. *Gas Diffusion into the Bubbles* Diffusion of gas atoms into the bubbles can be calculated using the following equation: .. math:: :label: eq147 J_{gi} = {k_{gi}C}_{g}N_{bi}A_{open}A_{ellipsoidal} .. math:: :label: eq148 k_{gi} = {E_{gbi}4\pi r}_{bi}D_{g} where :math:`J_{gi}` is the atomic flux into bubble-i by diffusion, :math:`k_{gi}` is the gas diffusion constant to bubble-i (m\ :sup:`3`/s), :math:`E_{gbi}` is the empirical bias factor, currently set to 1, :math:`r_{bi}` is the radius of bubble-i (m), :math:`D_{g}` is the diffusion coefficient of gas atom (m\ :sup:`2`/s), :math:`A_{open}` is area correction for the open porosity network (the value is unity for the diffusion into closed bubbles), and\ :math:`\ A_{ellipsoidal}` is the area correction for the ellipsoidal bubbles (the value is unity for spherical bubbles and pores). *Integration rate via Bubble Diffusion* The integration rate of bubble-i into bubble-j due to collision between bubble-i and j is given as follows: .. math:: :label: eq149 {ab}_{ij} = {k_{ij}N}_{bi}N_{bj}\rho_{gi} .. math:: :label: eq150 k_{ij} = 4\pi \left( r_{bi} + r_{bj} \right)\left( D_{bi} + D_{bj} \right) .. math:: :label: eq151 D_{bi} = \frac{3a_{0}^{4}}{2\pi r_{bi}^{4}}D_{s} The integration rate of bubble-i into bubble-j due to collision between two bubble-i is given as follows: .. math:: :label: eq152 {ab}_{ii} = 2k_{ii}N_{bi}^{2}\rho_{gi} .. math:: :label: eq153 k_{ii} = 16\pi r_{bi}D_{bi} The transition probability of bubble-i into bubble-i+1, :math:`\ f_{i,i + 1}`, can be obtained by: .. math:: :label: eq154 f_{i,i + 1} = \frac{2\rho_{gi}}{\rho_{gi + 1}} where :math:`D_{bi}` is the bubble-i diffusion coefficient (m\ :sup:`2`/s), :math:`D_{s}` is the surface diffusion coefficient (m\ :sup:`2`/s),\ :math:`\ r_{bi}` and :math:`r_{bj}` are the radius of bubble-i and bubble-j (m), respectively, and :math:`a_{0}^{2} = 9 \times 10^{- 20}`\ m\ :sup:`2`. *Integration rate via Bubble Growth* .. math:: :label: eq155 {gab}_{ij} = P_{ij}\rho_{gi}N_{bi} For collision between closed bubbles: .. math:: :label: eq156 P_{ij} = \begin{cases} \frac{2{{\Delta}r}_{bi}}{{0.5l}_{j} - r_{bi} - r_{bi}} & i = j \\ \frac{{{\Delta}r}_{bi}}{0.5l_{j} - r_{bi} - r_{bj}} & i \neq j \\ \end{cases} For collision between closed bubble and open pores: .. math:: :label: eq157 P_{ij} = \frac{{{\Delta}r}_{bi}}{l_{j}f_{p}} Where :math:`P_{ij}` is the probability of bubble-I colliding with bubble-j due to radial growth of bubble-i, :math:`{{\Delta}r}_{bi}` is the radial growth of bubble-i with in a time step (m),\ :math:`\ r_{bi}` and :math:`r_{bj}` are the radius of bubble-i and bubble-j (m), respectively, :math:`l_{j}` approximate distance between bubble-js, and :math:`f_{p}` is an empirical fitting factor. .. _table-A9.4-1a: .. list-table:: Fission gas atom density :math:`\rho_{g}` (atom) :header-rows: 0 :align: center :widths: auto * - Small Bubble - 0.75E+08 * - Medium Bubble - 0.2E+12 * - Large Bubble - 0.25E+14 .. _table-A9.4-1b: .. list-table:: Fuel swelling and fission gas release parameters :header-rows: 0 :align: center :widths: auto * - Y (atoms/fission) - 0.25 * - :math:`k_{b1nuc}` (bubble*atom/s) - 1.0E-20 * - Threshold gas swelling (\%) - 10 * - :math:`A_{open}` - 0.1 * - :math:`A_{ellipsoidal}` - 1.4 * - :math:`f_{p}` - 0.7