5.13. Input/Output Description¶
5.13.1. Input Description¶
The input description can be divided into the input needed for the PRIMAR-1 option and the input needed for the PRIMAR-4 option.
5.13.1.1. PRIMAR-1 Option¶
For the PRIMAR-1 option two variables need to be supplied for INPCOM (Block 1)
and all the variables for PRIMIN (Block 14). The two variables for INPCOM are
NPRES
and IPRION
.
5.13.1.2. PRIMAR-4 Option¶
For the PRIMAR-4 option, one variable needs to be supplied for INPCOM (Block 1),
eight variables for PRIMIN (Block 14), and all of the variables for INPMR4 (Block 3) and
PMR4IN (Block 18) that are appropriate for the model being considered. The one variable
for INPCOM is IPRION
. The eight variables for PRIMIN are
Variable Name |
Location |
---|---|
1 |
|
87 |
|
88 |
|
90 |
|
91 |
|
93 |
|
94 |
|
95 |
INPMR4 contains the integer input for PRIMAR-4 and PMR4IN contains the floating-point input, as described in the input listing in Chapter 2. Only input information pertinent to the model being calculated needs to be entered. For example, if no intermediate loop is present, no information for the intermediate loop in either INPMR4 or PMR4IN need be entered. Any variable not entered is assumed to be zero, since all of the input blocks are zeroed out before any input information is read in. Also, any extraneous information, which may be left over from an old input deck is ignored, provided all entries are made correctly. That is, if the number of compressible volumes in an intermediate loop is entered as zero, then any compressible volume information supplied for that intermediate loop will be ignored.
Suggested values for some of the PRIMAR input variables are as follows:
Note 1: The default values for the pump head coefficients \((a_h)\) in option 2 for the centrifugal pump are:
(5.13‑1)
i |
j=1, π>x>0 |
j=2, 3π/2>x>π |
j=3, 2π>x>3π/2 |
---|---|---|---|
0 |
0.63381 |
431.96699 |
6171.9821 |
1 |
0.46016 |
-574.61438 |
-4958.9692 |
2 |
-2.40040 |
301.00029 |
1406.3329 |
3 |
3.17937 |
-75.46586 |
-126.17344 |
4 |
-1.77304 |
8.67550 |
-13.21712 |
5 |
0.46236 |
-0.26062 |
3.24505 |
6 |
-0.04625 |
-0.01596 |
-0.16925 |
Note 2: The default values for the pump torque coefficients \((a_T)\) in option 2 for the centrifugal pump are:
(5.13‑2)
i |
j=1, π>x>0 |
j=2, 3π/2>x>π |
j=3, 2π>x>3π/2 |
---|---|---|---|
0 |
-0.68437 |
-1154.9471 |
-379.81080 |
1 |
2.77599 |
1858.4915 |
726.14914 |
2 |
-5.39880 |
-1237.6683 |
-496.25029 |
3 |
6.85412 |
436.01653 |
167.64136 |
4 |
-4.07579 |
-85.57377 |
-30.36692 |
5 |
1.08133 |
8.86277 |
2.83119 |
6 |
-0.10476 |
-0.37830 |
-0.10682 |
Note 3: Recommended values for the torque loss coefficients (APMPHD(K,IPMP) for K=1,…,11) in option 2 for the centrifugal pump are:
K |
APMPHD(K,IPMP) |
---|---|
1 |
0.01 |
2 |
0.0 |
3 |
-73.13 |
4 |
0.00268 |
5 |
0.0 |
6 |
0.07 |
7 |
0.00383 |
8 |
0.01071 |
9 |
0.01406 |
10 |
0.01 |
11 |
0.268 |
An example of INPMR4 and PMR4IN input, the integer and floating-point input blocks for PRIMAR-4, is shown below for the example used in Section 5.13.2.
INPMR4 3 0 0
1 10 5 0 0 5 0 0 3 0 0 14
11 10 1 7 9 11 11 0 0 0 0 0
41 10 0 0 0 0 0 0 0 0 1 3
51 10 2 3 3 2 3 3 5 3 6 3
61 10 3 3 0 0 0 0 0 0 0 0
181 10 0 0 0 0 0 0 0 0 1 2
191 10 1 2 1 2 2 3 3 1 0 0
261 10 0 0 0 0 0 0 0 0 2 4
271 10 3 4 4 5 0 0 0 0 0 0
321 10 0 0 0 0 1 3 3 1 6 0
361 10 0 0 0 0 1 2 5 8 9 0
401 10 0 0 0 0 1 9 0 0 0 0
411 10 0 0 0 0 0 0 0 1 0 0
461 10 0 0 0 0 0 0 0 0 0 1
471 10 0 0 11 0 0 0 0 0 0 0
481 10 0 0 0 0 0 0 0 0 1 0
511 10 0 10 4 7 4 4 7 4 20 16
521 10 41 30 0 0 0 0 0 0 0 0
611 10 0 0 2 3 4 5 6 7 8 9
621 10 11 12 0 0 0 0 0 0 0 0
711 10 0 0 2 3 4 5 6 7 8 10
721 10 11 14 0 0 0 0 0 0 0 0
811 10 0 0 2 7 7 0 0 0 0 0
821 10 0 1 1 0 0 0 0 0 0 3
831 10 6 0 0 0 0 0 0 0 0 0
881 10 0 0 0 0 0 0 0 0 0 50
END
PMR4IN 18 0 0
1 5 30.0 4.78500E+03 129.0 303.0 1.73900E+03
6 5 1.73900E+03 1.73900E+03 1.73900E+03 1.60000E+03 1.60000E+03
11 5 0.0 1.60000E+03 1.60000E+03 0.0 0.0
41 5 0.0-2.99600E+00-2.99600E+00-2.99600E+00 4.75600E+00
46 5 4.83600E+00 4.75600E+00 4.83600E+00 9.52880E+00 1.14340E+01
51 5 1.14340E+01 9.52880E+00 1.14340E+01 1.14340E+01 0.0
81 5 0.0 1.0 1.0 1.0 1.0
86 5 1.0 1.0 3.0 1.0 1.0
91 5 3.0 2.0 1.0 1.0 2.0
96 5 1.0 1.0 1.0 1.0 1.0
101 5 1.0 1.0 1.0 1.0 1.0
106 5 1.0 1.0 0.0 0.0 0.0
161 5 0.0 3.0 1.45000E-01 1.1 2.7
166 5 1.45000E-01 1.1 2.7 4.83600E+00 4.83600E+00
171 5 9.32580E+00 1.79430E+00-9.00000E-01-9.00000E-01-2.98950E+00
176 5 4.83600E+00 4.83600E+00 9.32580E+00 1.79430E+00-9.00000E-01
181 5-9.00000E-01-2.98950E+00 9.52900E+00 1.79430E+00 9.32580E+00
186 5 1.62920E+01 4.17600E+00 1.14340E+01 1.14340E+01 1.37520E+01
191 5 9.52900E+00 1.79430E+00 9.32580E+00 1.62920E+01 4.17600E+00
196 5 1.14340E+01 1.14340E+01 1.37520E+01 0.0 0.0
301 5 0.0 5.99600E+00 3.14100E+00 9.55000E-01 1.6
306 5 3.14100E+00 9.55000E-01 1.6 3.35280E+01 1.0
311 5 2.43840E+01 8.82000E+00 2.23600E+01 1.0 2.23600E+01
316 5 3.35280E+01 1.0 2.43840E+01 8.82000E+00 2.23600E+01
321 5 1.0 2.23600E+01 1.0 95.0 8.82000E+00
326 5 311.0 1.21160E+01 132.0 2.0 1.52400E+01
331 5 1.0 95.0 8.82000E+00 311.0 1.21160E+01
336 5 132.0 2.0 1.52400E+01 0.0 0.0
441 5 0.0 1.0 1.00000E-02 1.00000E-02 1.00000E-02
446 5 1.00000E-02 1.00000E-02 1.00000E-02 6.20720E-01 2.68000E-01
451 5 2.68000E-01 1.93600E+00 2.68000E-01 2.68000E-01 2.68000E-01
456 5 6.20720E-01 2.68000E-01 2.68000E-01 1.93600E+00 2.68000E-01
461 5 2.68000E-01 2.68000E-01 2.68000E-01 2.68000E-01 8.75000E-01
466 5 2.68000E-01 2.68000E-01 2.68000E-01 2.68000E-01 2.68000E-01
471 5 2.68000E-01 2.68000E-01 8.75000E-01 2.68000E-01 2.68000E-01
476 5 2.68000E-01 2.68000E-01 2.68000E-01 0.0 0.0
581 5 0.0 1.0 1.00000E-01 1.00000E-01 1.00000E-01
586 5 1.00000E-01 1.00000E-01 1.00000E-01 8.89000E-01 5.84200E-01
591 5 5.84200E-01 3.77000E-02 5.84200E-01 5.84200E-01 5.42000E-01
596 5 8.89000E-01 5.84200E-01 5.84200E-01 3.77000E-02 5.84200E-01
601 5 5.84200E-01 5.84200E-01 5.84200E-01 5.84200E-01 1.97660E-02
606 5 5.84200E-01 1.84000E-02 5.84200E-01 5.84200E-01 8.99000E-02
611 5 5.84200E-01 5.84200E-01 1.97660E-02 5.84200E-01 1.84000E-02
616 5 5.84200E-01 5.84200E-01 8.99000E-02 0.0 0.0
721 5 0.0 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05
726 5 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05
731 5 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05
736 5 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05
741 5 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05
746 5 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05
751 5 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05 5.00000E-05
756 5 5.00000E-05 5.00000E-05 5.00000E-05 0.0 0.0
861 5 0.0 0.0 1.0 0.0 1.0
866 5 1.0 0.0 1.0 1.0 0.0
871 5 10.9 0.0 6.8 1.0 6.8
876 5 1.0 0.0 10.9 0.0 6.8
881 5 1.0 6.8 0.0 9.6 0.0
886 5 18.9 0.0 28.6 1.0 1.0
891 5 0.0 9.6 0.0 18.9 0.0
896 5 28.6 1.0 1.0 0.0 0.0
1141 5 0.0 30.0 1.09550E+05 1.09550E+05 1.09550E+05
1146 5 1.09550E+05 1.09550E+05 1.09550E+05 1.09550E+05 1.65490E+05
1151 5 1.09550E+05 1.09550E+05 1.09550E+05 1.09550E+05 1.09550E+05
1156 5 1.09550E+05 1.65490E+05 1.09550E+05 1.09550E+05 1.09550E+05
1161 5 1.09550E+05 1.09550E+05 1.09550E+05 1.09550E+05 1.09550E+05
1166 5 1.09550E+05 1.09550E+05 1.09550E+05 1.09550E+05 1.09550E+05
1171 5 8.74070E+03 1.09550E+05 1.09550E+05 1.09550E+05 1.09550E+05
1176 5 1.09550E+05 1.09550E+05 1.09550E+05 8.74070E+03 0.0
1281 5 0.0 0.0 1.83530E+05 1.83530E+05 1.83530E+05
1286 5 1.83530E+05 1.83530E+05 1.83530E+05 1.83530E+05 2.79290E+05
1291 5 1.83530E+05 1.83530E+05 1.83530E+05 1.83530E+05 1.83530E+05
1296 5 1.83530E+05 2.79290E+05 1.83530E+05 1.83530E+05 1.83530E+05
1301 5 1.83530E+05 1.83530E+05 1.83530E+05 1.83530E+05 1.83530E+05
1306 5 1.83530E+05 1.83530E+05 1.83530E+05 1.83530E+05 1.83530E+05
1311 5 2.79290E+04 1.83530E+05 1.83530E+05 1.83530E+05 1.83530E+05
1316 5 1.83530E+05 1.83530E+05 1.83530E+05 2.79290E+04 0.0
1421 5 0.0 0.0 86.4 130.0 16.0
1426 5 1.0 100.0 1.0 8.0 40.0
1431 5 1.0 8.0 40.0 1.0 0.0
1461 5 0.0 1.00700E+05 1.00700E+05 0.0 1.00700E+05
1466 5 1.00700E+05 7.17000E+05 7.17000E+05 0.0 7.17000E+05
1471 5 7.17000E+05 0.0 0.0 0.0 0.0
1496 5 0.0 0.0 0.0 1.10000E-09 0.0
1506 5 0.0 0.0 0.0 0.0 1.10000E-09
1571 5 0.0 0.0 0.0 0.0 -1.6000E+00
1576 5 3.0 4.83600E+00 1.43600E+01 1.43600E+01 1.43600E+01
1581 5 10.4 1.37500E+01 1.14300E+01 10.4 1.37500E+01
1586 5 1.14300E+01 0.0 0.0 0.0 0.0
1611 5 0.0 0.0 0.0 27.0 3.07000E+00
1616 5 1.0 10.0 1.0 2.5 6.0
1621 5 0.0 2.5 6.0 0.0 0.0
1651 5 660.9 0.0 0.0 808.2 808.2
1656 5 808.2 0.0 0.0 616.5 0.0
1661 5 0.0 616.5 0.0 0.0 0.0
1686 5 0.0 0.0 0.0 1.6 208.1
1691 5 1.0 100.0 15.0 15.0 5.0
1696 5 5.0 15.0 15.0 0.0 0.0
1721 5 3.49150E-03 3.49150E-03 6.65840E-03 6.65840E-03 3.49150E-03
1726 5 3.49150E-03 0.0 0.0 0.0 0.0
1746 5 0.0 0.0 0.0 1.0 1.0
1751 5 1.0 3.0 1.0 1.0 1.0
1756 5 1.0 1.0 1.0 1.0 1.0
1801 5 0.0 0.0 0.0 0.0 6.66750E-02
1806 5 6.66750E-02 9.20750E-02 9.20750E-02 6.66750E-02 6.66750E-02
1861 5 0.0 1.0 1.0 1.0 1.0
1866 5 1.0 0.0 0.0 0.0 0.0
1896 5 0.0 0.0 0.0 1.20000E+03 0.0
1911 5 1.12675E+06 0.0 0.0 0.0 0.0
1921 5 0.0 0.0 1.16868E+02 0.0 0.0
1931 5 0.0 0.0 0.0 0.0 1.93200E+03
1946 5 0.0 9.00000E-01 0.0 0.0 0.0
1956 5 0.0 0.0 0.0 1.00000E-01 0.0
1981 5 0.0 0.0 1.22900E+00-1.80000E-01 1.92000E-01
1986 5-2.80000E-01 3.90000E-02 3.0-2.20400E-01 1.14400E-01
1991 5 8.05000E-02 6.02000E-02 5.84000E-01 3.30000E-02 5.53000E-01
1996 5-1.52000E-01-1.90000E-02 8.00000E-03 8.00000E-03 0.0
2001 5 0.0 3.24000E-02 1.0 1.0 5.12000E-01
2006 5 3.79000E-01 2.87000E-01 2.21000E-01 1.74000E-01 1.14400E-01
2011 5 8.05000E-02 6.02000E-02 4.76000E-02 3.96000E-02 2.64000E-02
2016 5 1.76000E-02 1.18000E-02 8.00000E-03 8.00000E-03 0.0
2021 5 0.0 3.24000E-02 1.0 1.0 3.00000E-01
2026 5 1.90000E-01 1.20000E-01 8.00000E-02 6.00000E-02 4.00000E-02
2031 5 3.00000E-02 2.00000E-02 1.60000E-02 1.40000E-02 1.20000E-02
2036 5 1.00000E-02 9.00000E-03 8.00000E-03 8.00000E-03 0.0
2041 5 0.0 3.24000E-02 1.0 1.0 3.00000E-01
2046 5 1.90000E-01 1.20000E-01 8.00000E-02 6.00000E-02 4.00000E-02
2051 5 3.00000E-02 2.00000E-02 1.60000E-02 1.40000E-02 1.20000E-02
2056 5 1.00000E-02 9.00000E-03 8.00000E-03 8.00000E-03 0.0
2061 5 0.0 3.24000E-02 0.0 0.0 0.0
2221 5 0.0 0.0 1.0 0.0 0.0
2226 5 3.0 4.0 5.0 6.0 8.0
2231 5 10.0 12.0 0.0 1.00000E-02 1.00000E+03
2236 5 24.0 28.0 32.0 400.0 401.0
2241 5 1.00000E+04 19.0 0.0 1.00000E+03 2.0
2246 5 3.0 4.0 5.0 6.0 8.0
2251 5 10.0 12.0 14.0 16.0 20.0
2256 5 24.0 28.0 32.0 400.0 401.0
2261 5 1.00000E+04 19.0 0.0 1.00000E+03 2.0
2266 5 3.0 4.0 5.0 6.0 8.0
2271 5 10.0 12.0 14.0 16.0 20.0
2276 5 24.0 28.0 32.0 33.0 40.0
2281 5 1.00000E+04 19.0 0.0 1.00000E+03 2.0
2286 5 3.0 4.0 5.0 6.0 8.0
2291 5 10.0 12.0 14.0 16.0 20.0
2296 5 24.0 28.0 32.0 33.0 40.0
2301 5 1.00000E+04 19.0 0.0 0.0 0.0
2461 5 0.0 0.0 9.8 2.13000E-10 2.13000E-10
2466 5 2.13000E-10 0.0 0.0 0.0 2.13000E-10
2471 5 2.13000E-10 2.13000E-10 2.13000E-10 2.13000E-10 2.13000E-10
2501 5 0.0-2.80000E-04-2.80000E-04-2.80000E-04-2.80000E-04
2506 5-2.80000E-04-2.80000E-04-2.80000E-04-2.80000E-04-2.80000E-04
2511 5-2.80000E-04-2.80000E-04-2.80000E-04 0.0 0.0
2536 5 0.0 0.0 0.0 0.0 844.0
2541 5 844.0 844.0 844.0 844.0 844.0
2546 5 844.0 844.0 844.0 844.0 844.0
2551 5 844.0 0.0 0.0 0.0 0.0
2576 5 0.0 0.0 5.00000E+04 1.00000E+03 5.00000E+04
2581 5 5.00000E+04 5.00000E+04 5.00000E+04 5.00000E+04 5.00000E+04
2586 5 5.00000E+04 5.00000E+04 5.00000E+04 5.00000E+04 0.0
2616 5 19.8 39.3 6.4 1.0 21.8
2621 5 1.0 4.0 11.8 1.0 4.0
2626 5 11.8 1.0 0.0 0.0 0.0
2651 5 0.0 0.0 0.0 7.59000E+06 1.30000E+08
2656 5 2.45000E+06 3.83000E+05 8.35000E+06 3.83000E+05 1.53000E+06
2661 5 4.52000E+06 3.83000E+05 1.53000E+06 4.52000E+06 3.83000E+05
2691 5 0.0 0.0 0.0 1.60000E-02 8.60000E-01
2696 5 4.55000E+00 1.96200E+01 1.96200E+01 0.0 0.0
2701 5 0.0 0.0 0.0 0.0 1.96200E+01
2706 5 1.96200E+01 0.0 0.0 0.0 0.0
2711 5 0.0 0.0 1.96200E+01 1.96200E+01 0.0
2721 5 1.96200E+01 1.96200E+01 0.0 0.0 0.0
2726 5 0.0 0.0 0.0 1.96200E+01 1.96200E+01
2736 5 0.0 6.13000E-04 6.13000E-04 0.0 0.0
2741 5 0.0 0.0 0.0 0.0 6.13000E-04
2746 5 6.13000E-04 0.0 0.0 0.0 0.0
2751 5 0.0 0.0 6.13000E-04 6.13000E-04 0.0
2761 5 6.90000E+06 6.90000E+06 0.0 0.0 0.0
2766 5 0.0 0.0 0.0 6.90000E+06 6.90000E+06
2776 5 0.0 6.90000E+06 6.90000E+06 0.0 0.0
2781 5 0.0 0.0 0.0 0.0 6.90000E+06
2786 5 6.90000E+06 0.0 0.0 0.0 0.0
2791 5 0.0 0.0 6.90000E+06 6.90000E+06 0.0
2801 5 1.0 1.0 1.0 1.0 1.0
2806 5 1.0 1.0 1.0 1.0 1.0
2811 5 1.0 1.0 1.0 1.0 0.0
2856 5 0.0 9.77550E-04 0.0 0.0 0.0
2861 5 0.0 9.77550E-04 0.0 0.0 0.0
2921 5 1.83000E-02 1.83000E-02 0.0 0.0 0.0
2926 5 0.0 0.0 0.0 1.83000E-02 1.83000E-02
2936 5 0.0 1.0 1.0 0.0 0.0
2951 5 1.0 1.0 0.0 0.0 0.0
3101 5 0.0 0.0 0.0 0.0 5.51000E+00
3106 5 5.51000E+00 10.5 10.5 10.5 0.0
3116 5 0.0 0.0 0.0 10.5 10.5
3121 5 10.5 10.5 10.5 0.0 0.0
3271 5 0.0 0.0 0.0 1.00000E+03 15.0
3276 5 1.00000E+03 1.00000E+03 0.0 0.0 0.0
3286 5 0.0 0.0 1.00000E+03 15.0 1.00000E+03
3291 5 1.00000E+03 0.0 0.0 0.0 0.0
3441 5 0.0 0.0 0.0 0.0 1.80000E+06
3446 5 1.80000E+06 0.0 0.0 1.60000E-02 8.60000E-01
3451 5 4.55000E+00 1.60000E-02 8.60000E-01 4.55000E+00 1.0
3456 5 1.0 1.0 1.0 1.0 1.0
3461 5 1.0 1.0 1.0 1.0 1.0
3466 5 1.0 1.0 1.0 1.0 1.0
3471 5 1.0 1.0 1.0 1.0 1.0
3476 5 1.0 1.0 1.0 1.0 1.0
3481 5 1.0 1.0 1.0 1.0 1.0
3486 5 1.0 1.0 1.0 1.0 1.0
3491 5 1.0 1.0 1.0 1.0 1.0
3496 5 1.0 1.0 1.0 1.0 1.0
3501 5 1.0 1.0 1.0 1.0 1.0
3506 5 1.0 1.0 1.0 1.0 1.0
3511 5 1.0 1.0 1.0 1.0 1.0
3516 5 6.56850E+00 6.56850E+00 0.0 0.0 0.0
3521 5 0.0 0.0 0.0 1.98990E+02 1.98990E+02
3531 5 0.0 1.76990E+02 1.76990E+02 0.0 0.0
3536 5 0.0 0.0 0.0 0.0 1.09900E-01
3541 5 1.09900E-01 0.0 0.0 0.0 0.0
3546 5 0.0 0.0 1.22865E-03 1.22865E-03 0.0
3556 5 4.47000E+06 4.47000E+06 0.0 0.0 0.0
3561 5 0.0 0.0 0.0 4.47000E+06 4.47000E+06
3571 5 0.0 1.96200E+01 1.96200E+01 0.0 0.0
3576 5 0.0 0.0 0.0 0.0 1.96200E+01
3581 5 1.96200E+01 0.0 0.0 0.0 0.0
3586 5 0.0 0.0 1.00000E+08 1.00000E+08 0.0
3596 5 1.00000E+08 1.00000E+08 0.0 0.0 0.0
3601 5 0.0 0.0 0.0 1.0 1.0
3606 5 0.0 0.0 1.0 1.0 0.0
3611 5 0.0 0.0 60.0 5.6 1.0
3616 5 100.0 1.0 2.7 23.0 0.0
3621 5 2.7 23.0 0.0 0.0 0.0
3646 5 0.0 0.0 0.0 0.0 1.60000E-02
3651 5 8.60000E-01 4.55000E+00 1.60000E-02 8.60000E-01 4.55000E+00
3656 5 1.95300E+00 0.0 0.0 0.0 0.0
END
5.13.2. Example of a Primary Loop¶
As an aid to the user in preparing PRIMAR-4 input data, the primary loop in Figure 5.13.1 is described.
This primary loop consists of five compressible volumes, CV1,…,CV5, five liquid segments, S1,…S5, fourteen elements, E1,…,E14, distributed among the liquid segments, nine temperature groups, T1,…,T9, of liquid flow elements, and three gas segments. The compressible volumes are:
CV1 = inlet plenum
CV2 = outlet plenum with cover gas
CV3 = pump bowl and cover gas
CV4 = compressible gas volume, no liquid
CV5 = compressible gas volume, no liquid
The elements are:
E1 = core subassemblies
E2, E4, E5, E7, E8, E10, E12, E13, E14 = pipes
E3, E6 = bypass channels
E9 = pump impeller
E11 = shell side of intermediate heat exchanger
The elements in liquid segment S5, for example, are E9, E10, E11, E12, E13, and E14.
The assumed directions of flow for the liquid, as well as for the gas, segments are indicated in the diagram. It is this assumed direction of flow that is used in choosing the inlet and outlet compressible volumes for a liquid or for a gas segment. For example, CV3 is the inlet compressible volume and CV1 is the outlet compressible volume for liquid segment S5, while CV3 and CV4 are the inlet and outlet compressible volumes for gas segment G2. It is also with respect to the assumed directions of the segments that positive and negative flow rates are interpreted. Finally, it should be observed that positive inlet flow to a liquid or gas segment is flow out of the compressible volume at the segment inlet.
The multiplicity of 3 that appears in Figure 5.13.1 where G2 joins CV4, where E8 joins CV2, and where E14 joins CV1 is present because in this example there are actually three identical primary loops attached to the respective compressible volumes, and instead of performing three identical calculations, the code computes one primary loop and multiplies the appropriate flows by 3. It should be noticed, however, that the multiplicity for liquid segment S4 is 3 at the inlet and 1 at the outlet, for liquid segment S5 it is 1 at the inlet and 3 at the outlet, and for gas segment G2 it is 1 at the inlet and 3 at the outlet. The multiplicity for all other liquid and gas segments must be set to 1 at both ends.
The liquid temperature calculations, which are performed after the liquid flow calculations have been completed, are done by temperature groups. This allows for the grouping of adjacent elements whose temperatures are computed in a similar way, such as elements E12, E13, and E14, all of which are pipes in temperature group T10, and also elements E9, and E10, a pump and connecting pipe, in temperature group T8. Where such grouping is inappropriate, a single element comprises a temperature group, such as the bypass channels as T2 and T5 and the intermediate heat exchanger as T9.
Although not shown in the figure, if an intermediate loop were to be added, it would be structured in a fashion similar to the primary loop, and it would contain an element representing the tube side of the intermediate heat exchanger and would be located next to E11 in the diagram.
5.13.3. Output Description¶
The PRIMAR output information is largely self-explanatory. Specimens of three output printouts for the example in Section 5.13.2 are displayed. The first is an input edit in which all of the input variables in Blocks 3 and 18 are echoed back. The second is a print of the steady-state values calculated by the PRIMAR steady-state routines. Finally, the third is the print of the values calculated by the transient routines at a later time step.
5.13.4. Plotting PRIMAR-4 Data¶
The PRIMAR4.dat binary output file is created by the PRIMAR-4 module when the input parameter NBINOT > 0. Data written to PRIMAR4.dat can be extracted with the PRIMAR4toXML utility which converts PRIMAR4.dat from binary to an XML spreadsheet. The XML spreadsheet can be imported into Microsoft Excel for convenient post-processing.
Once imported into Microsoft Excel, the XML version of PRIMAR4.dat will contain one row for each time step that was printed. The first few columns provide information related to the time, and the remaining columns provide the results of the variables selected in the IBINTOT array. They are in the same order that they are input, e.g. from K = 1 to NBINOT. In particular,
Column A: ISTEP time step number
Column B: IPRSTP printed time step number
Column C: Time (sec)
Column D: Data associated with IBINOT(1)
Column E: Data associated with IBINOT(2)
And so on up to IBINOT(NBINOT)
Unlike other binary output files, only user-selected data appears on
PRIMAR4.dat. That is, if you do not request a particular data item (e.g.
liquid segment flow rate) to be written, then it will not appear in
PRIMAR4.dat. The user selects the data items in the INPMR4 input block
(Block 3) using inputs NBINOT
, IBINST
, IBINOT
, and INULLT
. The input specifications are shown in
Table 5.13.1. The appropriate values for IBNTYP and INUM for each
available variable are provided in the Table 5.13.2. The notation for
the subscripts is as follows:
ISGL = liquid segment
ISGG = gas segment
ICH = channel
ICV = compressible volume
INOD = node
ITGP = temperature group
IPMP = pump
K = context specific
L = 1 for inlet, 2 for outlet
Variable |
Location |
Description |
---|---|---|
NBINOT |
891 |
The number of IBINOT entries for the binary output file. If NBINOT=0, no PRIMAR4.dat output will be generated. |
IBINST |
892 |
Output every IBINST PRIMAR time steps, default=1 |
IBINOT(K), K= 1:NBINOT |
893-972 |
Identification of binary output. IBINOT is a 6-digit code where
There is a special case where INUM>5000, in which case INUM-5000 is the starting value for a range of subscripts and the next INUM is the last value in that range. Examples: 240006:
10015:
245001 08:
|
IBNTYP |
INUM |
Description |
Variable |
---|---|---|---|
1 |
ISGL |
flow, liquid segment |
FLOSL2(ISGL) |
2 |
ISGG |
flow, gas segment |
FLOSG4(ISGLG) |
3 |
ICH |
estimated channel inlet |
CHFLO2(1,ICH) |
4 |
ICH |
estimated channel outlet flow |
CHFLO2(2,ICH) |
5 |
L |
estimated core flow |
CORFLE(L) |
6 |
L |
estimated core flow times temperature |
CORFTE(L) |
7 |
L |
actual integrated channel flow |
CORCHF(L) |
8 |
L |
channel flow times temperature |
CORFLT(L) |
9 |
ICH+100*(L-1) |
actual channel flow, beginning of step |
FLOCH1(L,ICH) |
10 |
ICH+100*(L-1) |
coefficients used to estimate the |
C0FLCH(L,ICH) |
11 |
ICH+100*(L-1) |
core flow for the next step |
C1FLCH(L,ICH) |
12 |
ICH+100*(L-1) |
C2FLCH(L,ICH) |
|
13 |
ICH+100*(L-1) |
C3FLCH(L,ICH) |
|
14 |
ICH+100*(L-1) |
subassembly inlet or outlet temperature |
TEXPEL(L,ICH) |
15 |
ICH+100*(L-1) |
energy of vapor condensing in inlet or outlet plenum |
ENVAPR(L,ICH) |
16 |
ICV |
liquid pressure for compressible volume ICV |
PRESL2(ICV) |
17 |
ICV |
gas pressure |
PRESG2(ICV) |
18 |
IPMP |
pump head for pump IPMP |
HEADP2(IPMP) |
19 |
ICV |
cover gas interface height |
ZINTR2(ICV) |
20 |
ICV |
gas volume |
VOLGC2(ICV) |
21 |
ICV |
total volume, liquid+gas |
VOLLGC(ICV) |
22 |
ICV |
liquid mass |
XLQMS2(ICV) |
23 |
ICV |
gas mass |
GASMS2(ICV) |
24 |
ICV |
liquid temperature |
TLQCV2(ICV) |
25 |
ICV |
liquid density |
DNSCV2(ICV) |
26 |
ICV |
wall temperature |
TWLCV2(ICV) |
27 |
ICV |
gas temperature |
TGASC2(ICV) |
28 |
ISGL+100*(L-1) |
liquid segment inlet or outlet temperature |
TSLIN2(L,ISGL) |
29 |
IELL |
gravity head for element IELL |
GRAVHD(IELL) |
30 |
IELL+400*(L-1) |
liquid element temperature |
TELEM(L,IELL) |
31 |
ITGP |
fraction of a node traversed by Lagrangian slugs In temperature group ITGP |
FRNDF2(ITGP) |
32 |
INOD |
liquid temperature, node INOD |
TLNOD2(INOD) |
33 |
INOD |
wall temperature |
TWNOD2(INOD) |
34 |
– |
outlet plenum density |
DLHOT |
35 |
– |
inlet plenum density |
DLCOLD |
36 |
ICH |
inlet temperature |
TINVAL(ICH) |
37 |
– |
outlet plenum pressure at beginning of time step |
PXT0 |
38 |
– |
time derivative of outlet plenum pressure |
DPXDT |
39 |
IPMP |
pump speed |
PSPED2(IPMP) |
40 |
– |
time derivative of inlet plenum pressure |
DPINDT |
41 |
– |
inlet plenum pressure at beginning of time step |
PIN |
42 |
Not used |
||
43 |
Not used |
||
44 |
Estimated boiling time |
BOILTM |
|
45 |
– |
next PRIMAR step size |
DTPNXT |
46 |
ICH |
coolant re-entry temperature |
TUPLVL(ICH) |
47 |
Not used |
||
48 |
L |
accumulated error in plenum mass |
DMSSUM |
49 |
L |
accumulated error in plenum mass times temperature |
DMTSUM |
50 |
INOD |
temperature of sink for component-to-component heat transfer |
TSNKND(INOD) |
51 |
INOD |
heat transfer coefficient for component-to-component heat transfer |
HSNKND(INOD) |
52 |
ICV |
temperature of sink for component-to-component heat transfer |
TSNKCV(ICV) |
53 |
ICV |
heat transfer coefficient for component-to-component heat transfer |
HSNKCV(ICV) |
54 |
ICV |
component-to-component heat transfer rate from compressible volume ICV |
QSNKCV(ICV) |
55 |
– |
RVACS heat removal rate |
QRVACS |
56 |
K |
component-to-component heat transfer rate for path K |
QCPCP(K) |
57 |
– |
RVACS air flow rate |
WAIRV2 |
58 |
K |
RVACS temperature for node K |
TRVACS(K) |
59 |
K |
guard vessel temperature |
TW2RV2(K) |
60 |
K |
shell inner temperature |
TW3RV2(K) |
61 |
K |
shell outer temperature |
TW4RV2(K) |
62 |
K |
outer wall temperature |
TW5RV2(K) |
63 |
K |
temperature of air between guard vessel and shell |
TA1RV2(K) |
64 |
K |
temperature of air between shell and outer wall |
TA2RV2(K) |