8.6. Computer Code Implementation

The DEFORM‑4 module is implemented in SAS4A as a group of subroutines. Section 8.6.1 gives a list of these subroutines and a brief description of the calculation performed by each. The direct coupling with SAS4A is through the subroutine SSFUEL for the pre‑transient calculation, and DFORM3 for the transient calculation.

The input parameters necessary for DEFORM‑4 to perform its calculations are given in Table 8.6.3. This table also includes cross‑references to the equation or section number where the parameter is used, the input location and variable name, a suggested value (assuming mixed‑oxide fuel with 20% cold-worked, stainless‑steel cladding), and the external reference where the suggested value originated. Further information on the input parameters is given in the Input Description (see Chapter 2 Section 2.2).

In Section 8.6.3 a brief description of the output generated by DEFORM‑4 is given. The sample output given in Figure 8.6.1 through Figure 8.6.13 are included for illustration only, and should not be used as a sample case.

8.6.1. Subroutine and Function List

Table 8.6.1 DEFORM‑4 Associated Subroutines and Functions

Routine

Description

ALPHC

Mean thermal expansion coefficient of the cladding

ALPHF

Mean thermal expansion coefficient of the fuel

CAVITE

Molten cavity gas release and pressurization

CLADSW

Irradiation-induced cladding swelling

CLDFAL

Cladding failure fraction calculations

CRAKER

Volume fraction of cracks in fuel

CSIGMA

Thermal-elastic calculation in the cladding

DEFINI

Initial setup routine

DEFORM

Main mechanics driver routine

DFORM3

DEFORM-4 interface to SAS4A for transient calculation

ECLADF

Cladding modulus of elasticity function

EFUELF

Fuel modulus of elasticity function

EXPAND

Thermal-mechanical axial expansion routine

FAILUR

Determination of reaching failure criterion

FK

Fuel thermal conductivity function

FSIGMA

Thermal-elastic calculation in the fuel

FSWELL

Fission-gas bubble swelling/compaction routine

GRGROW

Grain growth in the fuel

HGAP

Fuel-cladding gap conductance function

KFUEL

Thermal conductivity of the fuel

MKDRIV

Thermal-elastic and interface pressure control routine when solid fuel is completely cracked

NABOND

Fuel-cladding gap conductance for sodium-bonded metal fuel

OUTPT3

Short form output routine

OUTPT4

Standard output routine

PORMIG

As-fabricated porosity migration routine

PRESPL

Plenum pressure calculation

RELAX

Stress relaxation in the fuel (not operational)

RELGAS

Fission gas release in the fuel

RHOF

Theoretical density of fuel, solid and liquid

RHOL

Density of liquid fuel (not currently used)

RHOS

Density of solid fuel (not currently used)

SOLID

Thermal-elastic and interface pressure iteration control routine

SIGFRA

Fracture strengths of the fuel

SSFUEL

DEFORM-4 interface to SAS4A for pre-transient irradiation

UTS

Ultimate tensile strength of the cladding

YLDCF

Yield point of the cladding

Table 8.6.2 DEFORM-4 Subroutines and Functions Associated with 15-15Ti Cladding

Routine

Description

InitCheckClad15Ti(cladthickness, NCHAN)

Checks for the errors and calls INITSCLAD15Ti in order to allocate the required derived data type for each channel. “cladthickness” is the thickness of the cladding and NCHAN is the total number of channels.

INITSCLAD15Ti(ICH)

Initializes a CLAD15 derived typed for channel ICH. Called from SSFUEL.

BEGINCLAD15Ti(j)

Used to preserve initial values of the variables at each time step. Sets the values of the target variables using dummy storage variables for each axial node j.

ENDCLAD15Ti(j)

Used to update the dummy storage variables using the computed values of the target variables at the end of each time step for each axial node j.

CDFNORMALDIST(j)

Computes the clad failure fraction as a function of logarithm of CDF at axial location j.

INPT_CLAD15TiReadDat(unit,ich)

Reads the relevant variables for the 1515Ti cladding for channel “ich” from the restart file with an assigned file number, “unit”. It also calls INITSCLAD15Ti in order to allocate the required derived data type for each channel.

INPT_CLAD15TiWriteDat(unit,ich)

Writes the relevant variables for the 1515Ti cladding for the channel “ich” to the restart file with an assigned file number, “unit”.

ET15TI(sigma, temp)

Computes clad thermal creep rate for a given applied stress (sigma) and temperature (temp).

EPSWC15TI(neutronflux, fluence, dosconversion, temp)

Computes and returns the linear clad irradiation induced void swelling rate for 15-15Ti cladding, given the fast neutron flux (neutronflux), fast neutron fluence (fluence), dose conversion factor (doseconversion) and temperature (temp).

EPSIR15TI(temp, neutronflux, stress, dosconversion)

Computes and returns the clad irradiation creep rate for 15-15Ti cladding, given the temperature (temp), fast neutron flux (neutronflux), applied stress (stress) and dose conversion factor (dosconversion).

CRUP15TI(sigma, temp, dose)

Computes the creep rupture time of the cladding given the applied stress (sigma), temperature (temp), and cladding dose (dose).

8.6.2. Input Variables

Table 8.6.3 DEFORM‑4 Input Variables

Equation Variable

Reference Eq. Or Section No.

SAS4A Input Variable

Block

Location

Suggested Value

External Reference

IPROPT

1

6

0

IYLD

1

26

2

8.3.7

IMELTV

1

28

1

IXSTPC

1

32

0

IXSTPF

1

33

0

IMCVTY

1

34

0

IAREXT

1

40

0

POW

12

1

8.3-166

BETADN

12

4-9

ρo

8.7-1

COEFDS(1)

13

1

11.08D+3

8-17

C1

8.7-1

COEFDS(2)

13

2

2.04D-5

8-17

C2

8.7-1

COEFDS(3)

13

3

8.70D-9

8-17

C1

8.7-13

COEFK(1)

13

4

2.10D+0

8-32

C2

8.7-13

COEFK(2)

13

5

2.88D-3

8-32

C3

8.7-13

COEFK(3)

13

6

2.52D-5

8-32

C4

8.7-13

COEFK(4)

13

7

5.83D-10

8-32

C5

8.7-14

COEFK(5)

13

8

5.75D-2

8-32

C6

8.7-14

COEFK(6)

13

9

5.03D-4

8-32

C7

8.7-14

COEFK(7)

13

10

2.91D-11

8-32

Tr

8.2-5

TR

13

419

MWfg

8.3-24

FGMM

13

600

fg

8.3-22

GATPF

13

601

0.246

8-17

Ef

8.3-23

ENPF

13

602

Req

8.3-7

RLEQ

13

603

0.6

Rueq

8.3-21

RUEQ

13

604

1.2

8.3.1

PRSMIN

13

605

0.02

Ts

8.3-87

TFSOL

13

786-793

Tl

8.3-87

TFLIQ

13

794-801

Po

8.3-7

PRSTY

13

1073-1080

Not currently used

AC

13

1081

Not currently used

QSWL

13

1082

Ap

8.3-1

APORE

13

1083

20.704

8-6

Qp

8.3-1

QPORE

13

1084

4.5281D+5

8-6

A

8.3-1

ABC

13

1085

1.5

8-6

R

RGASSI

13

1086

8.31433

γ

8.3-45

GAMMA

13

1087

0.45

8-6

Apg

8.3-44

APG

13

1088

5.0D+4

8-6

Qpg

8.3-44

QPG

13

1089

56506.5

8-6

Gk

8.3-11

GK

13

1090

1.717D+10

8-11

Qv

8.3-11

QV

13

1091

3.87D+5

8-11

G

8.3-13

GK1

13

1092

1.4556D-8

8-12

Q

8.3-13

QV1

13

1093

2.67D+5

8-12

Gm

8.3-12

GRAINK

13

1094

2.23D-3

8-12

Qm

8.3-12

GRAINQ

13

1095

6.3375D+4

8-12

Cv

8.3-145

CVXE

13

1096

94.69

8-30

Cv

8.3-145

CVHE

13

1097

3.13D+3

8-30

δf

8.3-143

ROFF

13

1098

3.30D-06

δc

8.3-143

ROFC

13

1099

1.78D-06

Not currently used

AZEROX

13

1100

γ

8.3-145

GAMGS

13

1101

1.66

8-30

Not currently used

HARDNS

13

1102

Not currently used

ET

13

1103

1.0

8-30

ai

8.3-144

ACCHE

13

1104

0.15

8-19

ai

8.3-144

ACCXE

13

1105

0.85

8-19

Co

8.3-146

CZERO

13

1106

1.98

8-30

σ

8.3-135

STEBOL

13

1107

5.69D-8

εf

8.3-135

EMSF

13

1108

0.9

8-19

εc

8.3-135

EMSC

13

1109

0.8

8-19

QA1

8.3-42

QA1

13

1110

6.92D+3

8-16

QA2

8.3-42

QA2

13

1111

33.95

8-16

QA3

8.3-43

QA3

13

1112

0.338

8-16

QA4

8.3-43

QA4

13

1113

1.48D+4

8-16

QA5

8.3-43

QA5

13

1114

9.575

8-16

Aα

8.3-33

ALFSS

13

1115

2.0D-04

Qα/R

8.3-33

BETSS

13

1116

1.1D+04

vc

8.2

CNU

13

1117

0.3

8-17

vf

8.2

FNU

13

1118

0.3265

8-17

Not currently used

AM

13

1119

Not currently used

QLAX

13

1120

Not currently used

QLAX2

13

1121

Not currently used

DDX

13

1122

Not currently used

DDX2

13

1123

fgb

8.3-29

FIFNGB

13

1148

0.10

fm

8.3-81

FNMELT

13

1169

0.30

τg

8.3-107

CIRTFS

13

1170

16.67

C3

8.7-2

COEFDL(2)

13

1201

9.3D-5

8-17

Not currently used

QSTAR

13

1202

Not currently used

ABCPU

13

1203

Not currently used

QPU

13

1204

Not currently used

DPUO

13

1205

Not currently used

TMIDFG

13

1218

Not currently used

FGSPRD

13

1219

Not currently used

FGPORX

13

1220

Not currently used

FGMIN

13

1221

Not currently used

HECOND

13

1222

1.58D-3

8-38

Not currenty used

FGCOND

13

1223

7.2D-5

8-38

Not currently used

AKCOND

13

1224

0.75

8-38

Mn

8.3-140

HEMM

13

1225

4

sfp

8.3-62

EPSSFP

13

1226

2.46D-3

8-17

Not currently input

HEMASX

13

1227

Not currently input

ZSWFAC

13

1228

Af

8.2-57

FAXIAL

13

1258

1.0

εcw

8.3-62

FCLDWK

13

1259

Not currently used

FMELTD

13

1260

Not currently used

FSTRAN

13

1261

fH

8.5-1

FTMPCH

13

1262

0.6

fa

8.3-116

EXPCOF

13

1263

1.0

PRTSTR

13

1264

0.0

PRTDEL

13

1265

0.0

8.4.3

FIRLIM

13

1266

0.80

8.4.3

SECLIM

13

1267

0.95

8.4.3

THRLIM

13

1268

0.98

8.4.3

DTFAL1

13

1269

0.020

8.4.3

DTFAL2

13

1270

0.010

8.4.3

DTFAL3

13

1271

0.002

Not currently used

AKD

13

1272

Not currently used

CKD

13

1273

Not currently used

QKD

13

1274

8.3.6

FGFI

13

1275

8.7.4

IRHOK

51

3

3

N

8.3-27

NT

51

14

11

IFUELV

51

15

IFUELB

51

16

ICLADV

51

17

8.3.3

KTING

51

19

0

NAXOP

51

20

25

MSTEP

51

21

8.3.5

ITAU

51

22

0

8-17

8.3.5

IRATE

51

23

0

8-17

8.3.8

IHGAP

51

24

1

Npps

8.3-166

NPIN

51

25

Nspc

8.3-166

NSUBAS

51

26

8.1

MZUB

51

27

8.1

MZLB

51

28

IRELAX

51

30

0

n

8.3-11

NGRAIN

51

31

4

8-11

ISSFUE

51

32

1

NPLIN

51

37-44

JPRNT1

51

46

0

JPRNT2

51

47

0

NNBUG1

51

48

0

NNBUG2

51

49

0

IDBUGF

51

50

0

NSKIP

51

51-58

MFAIL

51

86

3

IFAIL

51

87

0

JFAIL

51

88

0

8.3.4.1

IPSIG

51

95

3

IHTPRS

51

96

0

IPRD

51

97

3

8.1

IEQMAS

51

118

1

ISSFU2

51

122

1

IHEALC

51

123

2

IAXTHF

51

124

1

A

8.3.9

AXHI

61

8-31

PLENL

61

53

RBR

61

54-77

RER

61

78-101

RBRPL

61

102

RERPL

61

103

RINFP

61

104-127

ROUTFP

61

128-151

RBR0

61

180

RER0

61

181

PSHAPE

62

6-29

S

8.3-27

PSHAPR

62

30-44

PLIN

62

45-52

TPLIN

62

53-60

FLTPOW

62

61

8.3.9

FUELRA

62

208-231

A

8.3-152

AHBPAR

63

2

0.0

8-22

B

8.3-152

BHBPAR

63

3

0.0

8-22

C

8.3-152

CHBPAR

63

4

0.0

8-22

8.3.8

HBMAX

63

5

4.0D+4

8-22

8.3.8

HBMIN

63

6

1.0D+2

H

8.3-152, 153

HBPAR

63

7

0.0

Do

8.3-21

DGO

63

26

1.0D-5

Pogas

8.3-6

P0GAS

63

27

FCLOP

63

68

Ts1

8.5-2

TSEP1

63

69

2.2D+3

Ts2

8.5-2

TSEP2

63

70

1.0D-8

BONDNA

63

71

REFDEN

63

72

8.4

FSPEC

65

1

8.4

FMELTM

65

2

0.20

IDEFOPT

INPCHN

497

ICTYPE

INPCHN

225

Eq. (8.7-52)

IDEFSTFAL

INPCHN

498

Eq. (8.7-49)

CDOSECONV

PMATCH

149

Section 8.7.17.5

COCOR

PMATCH

150

\(\mu\)

Eq. (8.7-52)

CDFMEAN

PMATCH

151

\(\sigma\)

Eq. (8.7-52)

CDFSIGMA

PMATCH

152

8.6.3. Output Specific to DEFORM-4

Figure 8.6.1 through Figure 8.6.13 show a sample of the output generated by DEFORM‑4. This sample is for a section of pre‑transient output, but the same output is generated in the transient case. What follows is a very brief discussion of the output format for each page.

../../_images/image173.png

Figure 8.6.1 SAS4A Steady-state Coolant Condition Output

The standard SAS4A coolant temperature/pressure summary.

../../_images/image184.png

Figure 8.6.2 SAS4A Fuel Temperature and Node Location Map

Fuel node boundary locations and cell temperatures. Radial and axial node numbers are shown. Under “IZ” is the node number of the first non‑molten cell. Under “IETA” is the node number of the last solid, i.e., un-cracked, cell. Therefore, IZ to IETA defines the extent of the solid annular fuel region.

../../_images/image192.png

Figure 8.6.3 SAS4A Fuel-pin Condition Summary Output

Fuel/cladding summary information is presented. The titles are self-explanatory except for the third one in the bottom section. This column shows the ratio of the calculated gap conductance to that used for the next time step thermal calculation. Since there is no iteration between the DEFORM‑4 mechanics calculation and the SAS4A thermal calculation, a scheme has been employed to avoid gross oscillations in the gap conductance and temperatures. This is to use the average of the calculated and previously used gap conductance for the next time step. In order to determine how close the values are to those calculated, this ratio is printed.

../../_images/image202.png

Figure 8.6.4 DEFORM-4 Radial Stress Map

The radial stress at each fuel and cladding node. Also printed is the fuel‑cladding gap, GAP, the fuel‑cladding interface pressure, PFCI, and the coolant pressure, PEXT. All stresses and pressures are in Pascal and the gap is in meters.

../../_images/image213.png

Figure 8.6.5 DEFORM-4 Circumferential Stress Map

The circumferential stress at each fuel and clad node boundary, in pascals.

../../_images/image223.png

Figure 8.6.6 DEFORM-4 Axial Stress Map

The axial stress at each fuel and clad node boundary in pascals.

../../_images/image234.png

Figure 8.6.7 DEFORM-4 Fission-gas Retention Fraction Map

The fission‑gas retention fraction in each fuel cell. The column titled ‘FG RET (KG)’ is the retained fission‑gas total in kg, ‘FG PRD (KG)’ is the total kg of fission gas produced, ‘M‑FG/M‑FUEL’ is the kg of fission gas retained divided by the mass of fuel, ‘FRAC RELS’ is the fractional release, and ‘NUET/M2’ is the fluence, for each axial segment.

../../_images/image242.png

Figure 8.6.8 DEFORM-4 Total Porosity Fraction Map

The total porosity fraction in the fuel cells, i.e., retained fission-gas porosity plus remaining as‑fabricated porosity.

../../_images/image252.png

Figure 8.6.9 DEFORM-4 Fission-gas induced Porosity Fraction Map

The fission‑gas‑induced porosity in each fuel cell.

../../_images/image263.png

Figure 8.6.10 DEFORM-4 Fuel Grain Size Map

The grain size in each fuel cell, in meters.

../../_images/image273.png

Figure 8.6.11 DEFORM-4 Fuel Crack Volume Fraction Map

The crack volume fraction in each fuel cell.

../../_images/image282.png

Figure 8.6.12 DEFORM-4 Radial Node Locations

Mesh points in the fuel and the inner and outer clad dimensions. Also shown are the boundaries between the unrestructured and equiaxed region, IUNEQA, and between the equiaxed and columnar regions, IEQCOL.

../../_images/image292.png

Figure 8.6.13 DEFORM-4 Short Form Pin Summary Output

Short summary output from DEFORM‑4 showing the values calculated for various failure parameters. The hoop stress values are a simple average based on the inner and outer pressures and thickness of the clad.

If a failure criterion has a value greater than 1.0, then that criterion predicts failure. Currently, only the MFAIL parameters are used to automatically initiate failure of the pin.

The amount of output can be controlled through the use of NSKIP and IPRD in block 51 of the input. In the transient state the output from DEFORM‑4 is printed at the end of a heat‑transfer time step, as controlled by IPO and IPOBOI.

Listing 8.6.1 Sample DEFORM-4 Output using 15-15Ti Model (IDEFOPT > 0 and ICTYPE = 4)
 AXIAL  AXIAL    BURNUP   CLAD     CLAD         CLAD       CLAD      CLAD       CLAD       FUEL PINS
 FUEL   ELEV     ATOM     DOSE     OUTER       SWELLING  IRRADIATION THERMAL    FAILURE    FAILURE
 NODE    (M)     (%)     (DPA)   CORROSION(M)   (%)       CREEP(%)   CREEP(%)   MARGIN     FRACTION
  24   1.1940   0.0566   0.4579  0.000E+00    0.000E+00  0.388E-03   0.127E-02  0.100E-05  0.000E+00
  23   1.1840   0.0566   0.4579  0.000E+00    0.000E+00  0.388E-03   0.127E-02  0.100E-05  0.000E+00
  22   1.1551   2.2660  18.1978  0.000E+00    0.000E+00  0.151E-01   0.136E-02  0.100E-05  0.000E+00
  21   1.1069   6.8080  53.7328  0.000E+00    0.000E+00  0.438E-01   0.152E-02  0.100E-05  0.000E+00
  20   1.0582   7.8651  61.9464  0.000E+00    0.000E+00  0.514E-01   0.138E-02  0.100E-05  0.000E+00
  19   1.0094   8.8115  69.3621  0.000E+00    0.000E+00  0.581E-01   0.123E-02  0.100E-05  0.000E+00
  18   0.9607   9.7293  76.5560  0.000E+00    0.682E+00  0.636E-01   0.111E-02  0.100E-05  0.000E+00
  17   0.9118  10.4418  82.1941  0.000E+00    0.127E+01  0.654E-01   0.990E-03  0.100E-05  0.000E+00
  16   0.8629  11.0819  87.1732  0.000E+00    0.178E+01  0.707E-01   0.917E-03  0.100E-05  0.000E+00
  15   0.8140  11.4866  90.2900  0.000E+00    0.234E+01  0.990E-01   0.953E-03  0.100E-05  0.000E+00
  14   0.7651  11.7833  92.7017  0.000E+00    0.280E+01  0.138E+00   0.877E-03  0.100E-05  0.000E+00
  13   0.7163  11.9357  94.0680  0.000E+00    0.308E+01  0.194E+00   0.840E-03  0.100E-05  0.000E+00
  12   0.6676  11.9144  93.6432  0.000E+00    0.329E+01  0.286E+00   0.105E-02  0.100E-05  0.000E+00
  11   0.6188  11.7873  92.6803  0.000E+00    0.386E+01  0.369E+00   0.121E-02  0.100E-05  0.000E+00
  10   0.5699  11.4915  90.4318  0.000E+00    0.413E+01  0.408E+00   0.117E-02  0.100E-05  0.000E+00
   9   0.5210  11.1543  87.7450  0.000E+00    0.447E+01  0.477E+00   0.150E-02  0.100E-05  0.000E+00
   8   0.4721  10.5050  82.6725  0.000E+00    0.378E+01  0.514E+00   0.201E-02  0.100E-05  0.000E+00
   7   0.4230   9.8220  77.2449  0.000E+00    0.303E+01  0.733E+00   0.159E+00  0.100E-05  0.000E+00
   6   0.3740   9.0097  70.9643  0.000E+00    0.190E+01  0.489E+00   0.418E-02  0.100E-05  0.000E+00
   5   0.3252   8.0608  63.5630  0.000E+00    0.103E+01  0.456E+00   0.645E-02  0.100E-05  0.000E+00
   4   0.2633   0.0076   0.0612  0.000E+00    0.000E+00  0.459E-03   0.198E-01  0.100E-05  0.000E+00
   3   0.1880   0.0076   0.0612  0.000E+00    0.000E+00  0.459E-03   0.198E-01  0.100E-05  0.000E+00
   2   0.1128   0.0076   0.0612  0.000E+00    0.000E+00  0.459E-03   0.199E-01  0.100E-05  0.000E+00
   1   0.0376   0.0076   0.0612  0.000E+00    0.000E+00  0.459E-03   0.199E-01  0.100E-05  0.000E+00

Listing 8.6.1 shows an example output from a fuel performance with 15-15Ti cladding in a fuel channel. Columns show the axial node number, the axial elevation (m), fuel burnup (at%), clad dose (dpa), clad outer corrosion thickness (m), which is controlled by COCOR input, irradiation induced volumetric clad swelling (%), clad irradiation and thermal creep hoop strain (%), clad failure margin due to thermal creep rupture, which is the computed Clad Damage Fraction value (CDF) and fuel pin failure fraction (or probability) computed if stochastic clad damage evaluation module is switched ON (IDEFSTFAL > 0 and IDEFOPT > 0). Irradiation creep, thermal creep, void swelling, and clad creep rupture and clad failure fractions are computed by EPSIR15Ti, ET15Ti, EPSWC15Ti, CRUP15Ti, and CDFNORMALDIST routines, respectively. This output can be printed together with the DEFORM-4 output for normal operation and transient simulations at user specified steps.