9.8.3. Appendix 9.3: Thermodynamics and Kinetics Parameters of Fuel Clad Chemical Interaction Model
Lanthanide Migration
The solubility limit of lanthanides in metallic fuel is assumed to be zero [9‑4]. The lanthanide diffusion coefficient is given in Eq. (9.8-4). Below 800 K, the temperature is set to 800 K in order to account for the irradiation-induced diffusivity. Ref. [9‑5] is used to assess the solubility limit of lanthanides. Thermodynamic and kinetics parameters related the lanthanide diffusion and precipitation model are given in Table 9.8.5. Note that solubility limit of D9 cladding is reduced significantly compared to the HT9 cladding in order to account for excessive clad wastage behavior observed in experiments. Diffusion constant and diffusion activation energy is used as fitting factors.
\(D_{0}\) (m \(^2\)/s) |
5.0 |
\(Q_{0}\) (kJ/mol) |
250.0 |
\(Y_{la}\) (#/J) |
\(15.29E+09\) |
Solubility in HT9 (atom/ \(m^{3}\)) |
\(6.4E+27\) |
Solubility in D9 (atom/ \(m^{3}\)) |
\(0.5E+27\) |
Iron and Actinide Migration
The iron and actinide diffusion coefficients are calculated using the relationships given in Eq. (9.8-4) and Eq. (9.8-5), respectively. Table 9.8.6 and Table 9.8.8 gives the diffusion constant and activation energy values. Table 9.8.9 and Table 9.8.10 gives the thermodynamics and kinetics parameters used in iron and actinide diffusion and eutectic formation. The experimental observartions in Ref. [9‑6] is used to extract thermodynamics and kinetics parameters.
Parameter |
T < \(T_{\beta + \gamma }\) |
T \(\geq T_{\beta + \gamma }\) |
---|---|---|
\(D_{0Fe}\) (m \(^2\)/s) |
0.225E-03 |
1.0E-03 |
\(Q_{0Fe}\) (kJ/mol) |
220 |
220 |
\(D_{0Fe}\) (m \(^2\)/s) |
8.5E-03 |
\(Q_{0Fe}\) (kJ/mol) |
251 |
Parameter |
T < 1074.15 K |
1074.15 K \(\leq\) T \(\leq\) 1094.15 K |
T \(\geq\) 1094.15 K |
---|---|---|---|
\(D_{0Ac}\) (m \(^2\)/s) |
2.86E-08 |
\(2.86E-08 + 4.29E-08 \frac{T-1075.15}{20}\) |
7.15E-08 |
\(Q_{0Ac}\) (kJ/mol) |
120 |
120 |
120 |
Phase Structure |
Interaction Parameter (J/mol) |
Iron Solubility Limit (%) |
Phase growth activation energy (kJ/mol) |
---|---|---|---|
(U,Pu)Fe2 |
-3000 |
66.7 |
220 |
Fe2Zr + (U,Pu)6Fe |
-1200 |
40.5 |
220 |
(U,Pu)6Fe + U-32Zr-50Fe |
-750 |
28.6 |
220 |
(U,Pu)6Fe + U-42Zr-33Fe |
-650 |
21.8 |
220 |
U-Zr matrix + U-42Zr-33Fe |
-500 |
13.2 |
220 |
U-Zr matrix + U-23Zr-6Fe |
-800 |
2.5 |
220 |
(U,Pu)Zr |
-800 |
0.0 |
220 |
Clad |
-600 |
0.05 |
220 |
Eutectic |
-1600 |
0.5 |
220 |
Phase Structure |
T \(\le T_{\beta + \gamma}\) |
T \(\geq T_{\beta + \gamma}\) |
---|---|---|
(U,Pu)Fe2 |
1.69E+05 |
7.5E+05 |
Fe2Zr + (U,Pu)6Fe |
3.38E+05 |
1.5E+56 |
(U,Pu)6Fe + U-32Zr-50Fe |
1.7E+06 |
7.5E+06 |
(U,Pu)6Fe + U-42Zr-33Fe |
2.81E+06 |
1.25E+07 |
U-Zr matrix + U-42Zr-33Fe |
3.94E+06 |
1.75E+07 |
U-Zr matrix + U-23Zr-6Fe |
5.63E+07 |
1.5E+08 |
(U,Pu)Zr |
0.0 |
0.0 |
Clad |
0.0 |
0.0 |
Eutectic |
2.81E+09 |
1.25E+10 |