9.8.5. Appendix 9.5: Mechanical Properties

The elastic and thermal expansion properties for metal fuel [9-22] [9-28], HT9 and D9 cladding [9-29], with temperature defined in Kelvin, are

Elastic Modulus (Pa)

[9-12]

(9.8-20)E={(56+0.1158(865T))109phase = α+δ(56+0.2158(865T))109phase = β+γ or γ
(9.8-21)E={(2.137E+05102.74(T273.15))106Clad = HT9 (2.137E+05102.74(T273.15))106Clad = D9 

Poisson’s Ratio (-)

(9.8-22)ν={0.3phase = α+δ0.3phase = β+γ or γ
(9.8-23)ν={0.3Clad = HT9 0.3Clad = D9 

Thermal Expansion Coefficienti (m/ΔmK)

The composition-dependent thermal expansion coefficient for metallic fuel is determined by interpolating between alloy/component data in the Metallic Fuels Handbook [9-22].

The cladding thermal expansion coefficient, with temperature defined in Kelvin, and T0=293.15 K, is

(9.8-24)α={(0.2191+5.678E4(TT0)+8.111E7(T2T20)2.576E10(T3T30))102Clad = HT9 (0.4274+1.282E3(TT0)+7.362E7(T2T20)2.069E10(T3T30))102Clad = D9 

Fuel Pore Sintering Yield Stress

Experimental data, although limited, shows evidence of pore sintering due to the softness of metallic fuel at elevated temperatures [9‑24]. Prior to eutectic formation, any fuel expansion, caused by thermal expansion or fission product swelling, is balanced by pore sintering and fuel clad mechanical interaction. This balance is also evident in high-level experiments such as TREAT M-Series [9‑25] and Whole Pin Furnace tests [9‑26].

In order to account for the impact of pore sintering at elevated temperatures, a pore yield strength model, which is a function of creep rate and pore compressibility factor, is developed based on a reference data point in Ref. [9‑24] and expert judgement. The selected reference point for pore yield strength is given in Table 9.8.13.

Table 9.8.13 Selected reference point for pore sintering yield stress

Reference Parameters

Reference Values

Temperature

973.15 K

Hydrostatic Stress

2.5 MPa

Pore Compressibility factor

C/6

C - Fitting Factor

10

Given temperature, hydrostatic stress, and fuel porosity, the model computes the pore compressibility factor (αp), then solves the following equation to compute the pore yield strength(σf):

(9.8-25)ϵf(σf)αpf=ϵref(σref)αpref

where ϵf is the fuel equivalent creep rate (1/s) given the current temperature and hydrostatic stress, αpf is the current fuel porosity compressibility factor (See Eq. (9.2-87)), ϵref is the equivalent creep rate (1/s) computed using the parameters in Table 1, αpref is the pore compressibility factor given in Table 1, and σf and σref are the fuel pore yield strength (MPa) and reference stress (MPa), respectively. The assumed upper limits for pore yield strength are for porous fuel with more than 10% fuel porosity and low porosity fuel with less than 10% fuel porosity are 50 MPa and 80 MPa, respectively.

Clad Irradiation Creep

Irradiation creep strain of HT9 and D9 cladding is modeled using the following equations.

HT9 Clad:

(9.8-26)εirHT9=b0+a×exp(qRT)×ϕ×(σeq×106)1.3×0.01×Dc5

where εirHT9 is the HT9 irradiation creep strain rate (1/s), b0 =1.83×104, a = 2.59×1014, q = 7.3×104, T is the temperature (K), R is the universal gas constant (cal/mol/K), ϕ is the neutron flux (#/cm2-s/1022), σeq is the equivalent stress rate (Pa), and Dc is dose conversion (dpa/n/cm2/1022) [9-30].

D9 Clad:

(9.8-27)εirD9=Amod×ϕ×(σeq× 106)×0.01×Dc
(9.8-28)Amod={2×106T723.15 K2×106+(3×1072×106)773.15723.15 (T723.15)723.15<T773.153×107T> 773.15

Where εirD9 is the D9 irradiation creep strain rate, T is the temperature (K), ϕ is the neutron flux (#/cm2-s/1022), σeq is the equivalent stress rate (Pa), and Dc is dose conversion (dpa/n/cm2/1022) [Section 9.8.8.2.4].

Clad Thermal Creep

Thermal creep strain of HT9 and D9 cladding is modeled using the following equations.

HT9 Clad [9‑30]:

(9.8-29)εThHT9= (εpHT9+εsHT9+εtHT9)×0.01
(9.8-30)εpHT9= [C1× EXP(Q1RT) × (σeq× 106) + C2 × EXP(Q2RT) × (σeq×106)4 +C3 ×  EXP(Q1RT) × (σeq× 106)0.5 ]× EXP(C4 × t) × C4
(9.8-31)εsHT9 =C5 × EXP(q4RT) × (σeq× 106)2 + C6  EXP(q5RT) × (σeq× 106)5
(9.8-32)εtHT9 ={CHT9Creep×4× C7 × EXP(Q6RT)× (σeq× 106)10× t3T1200 K0T>1200 K

Where T is the temperature (K), R is gas constant (cal/mol/K), ϕ is the neutron flux (#/cm2-s/1022), σeq is the equivalent stress rate (Pa), and t is time (s). Table 9.8.14 includes the values of the parameters corresponding to Eq. (9.8-30), Eq. (9.8-31), Eq. (9.8-32).

Table 9.8.14 HT9 thermal creep parameters

C1

13.4

C2

8.43e-03

C3

4.08e+18

C4

1.6e-06

C5

1.17e+9

C6

8.33e+9

C7

9.53e+21

Q1

15027

Q2

26451

Q3

89167

Q4

83142

Q5

108276

Q6

282700

CHT9Creep

0.15

D9 Clad:

(9.8-33)εThD9=εOS × (σeq(20000  9.12 × T) × (92000  40.2 × T))m×exp(QrT)

Where εThD9 is the D9 thermal creep rate (1/s), T is the temperature (K), σeq is the equivalent stress rate (Pa), and εOS is 38633 (1/s), m is 5.35, Qr is 1.062e+14 K.

Irradiation Induced Void Swelling

Irradiation induced void swelling strain of HT9 and D9 are modeled using the following equations.

HT9 Clad:

If the cladding dose is less than 100 dpa, HT9 void swelling rate is set to zero [9-11]. Above 100 dpa, the following temperature dependent linear void swelling rate is adopted:

(9.8-34)εswHT9={(0.0000833+0.00010.000083350.0(T623.0))×ϕ×Dc3T 673 K(0.0001+0.00008330.000150.0(T  673.0))×ϕ×Dc3673 K<T 723 K(0.0000833+0.00005  0.000083350.0(T723.0))×ϕ×Dc3723 K< T 773 K(0.000075+0.0000250.00007550.0(T773.0))×ϕ×Dc3773 K<T 823 K(0.00005+0.00001250.0000550.0(T823.0))×ϕ×Dc3823 K<T 873 K0T>873 K

where εswHT9 is linear incremental HT9 void swelling strain, T is the temperature at the clad midwall (K), ϕ is the neutron flux (#/cm2-s/1022), ψ is the neutron fluence (#/cm2/1022), and Dc is dose conversion (dpa/n/cm2/1022).

D9 Clad:

[9-31]

(9.8-35)εswD9={0.2×0.013.0×ϕ×DcT<723 K and dpa 550.5×0.013.0× ϕ×DcT 723 K and dpa 600else