16.8. Input Parameters Relevant to LEVITATE

The input parameters relevant to LEVITATE are summarized in Table 16.8.1. A description of these parameters can be found in the SAS4A input listing attached to this document. Table 16.8.1 lists the recommended values for these parameters and the sections and equations were those parameters are mentioned in the text. This list of equations is not necessarily exhaustive, and some input parameters might appear in other equations, in addition to those listed in the table (e.g., AXMX appears in many places and it was not possible to list all occurrences). Comments have been also added occasionally to complement the description given in the SAS4A input listing.

Table 16.8.1 Input Description

Input Location

FORTRAN

Variable

Symbol

Section

Reference

Equation

Reference

Suggested

Value (MKS)

Comments

Block 1, INPCOM

37

KFAILP

14.3.3

\(0\)

Controls the axial pin failure propagation calculation.

38

NCPLEV

14.3.4

14.4.3.2

16.1.3.1

\(3\)

Switch from PLUTO2 to LEVITATE when NCPLEV axial clad nodes have exceeded the cladding liquidus temperature.

39

NFUELD

16.1.3.4

\(-5\)

Number of dollars of fuel reactivity which has to be reached to terminate the calculation.

42

NSLEEX

16.1.3.4

\(10\)

Number of fully molten hexcan cells in a subassembly which has to be reached to terminate the calculation.

44

INRAEJ

16.3.1

\(1\)

If INRAEJ=1 the ejection of in-pin fuel is calculated using a mechanistic model. If 0 the parametric fuel ejection calculation is used (see CIPINJ).

47

ICHUNK

\(0\)

If ICHUNK=1 the chunk model is operational. Although the physical picture is more complete when ICHUNK-1, the chunk model has not yet been thoroughly validated. When ICHUNK=0 the chunk model is disabled.

48

ILUBLK

\(0\)

This variable is relevant only when the chunk model is active i.e. ICHUNK=1. If ILUBLK=1 the bulk fuel freezing leads to chunk formation when no solid support for crust formation is available. If ILUBLK=0 no chunk formation occurs under the circumstances mentioned above.

Block 13, PMATCM

1126

CIBBIN

16.4.3.9.1

\(0.7\)

1127

CIREFN

16.4.3.8.2

Eq. (16.4-198)

\(2100\)

1128

CIFRFU

16.4.3.8.2

Eq. (16.4-198)

\(0.03\)

1129

CIFUMO

16.4.3.8.2

Eq. (16.4-206)

\(1\)

Some of the in-pin axial momentum might be lost during the ejection process, due to interactions with the stationary components.

1133

CIA3

16.4.3.10.1.5

16.4.3.10.1.6

16.4.3.10.1.7

Eq. (16.4-310)

Eq. (16.4-314)

Eq. (16.4-319)

1135

CIA5

16.4.3.8.1

Eq. (16.4-173)

\(-2.7\)

1136

CIA6

16.4.3.8.1

Eq. (16.4-170)

Eq. (16.4-172)

\(0.1068\)

1139

CPFU

\(c_{\text{p,fu}}\)

16.4.3.10.1.2

Eq. (16.4-284)

Eq. (16.4-286)

\(500.0\)

1140

CDFL

\(k_{\text{fu}}\)

16.4.3.10.1.2

16.4.3.10.1.5

Eq. (16.4-289)

Eq. (16.4-290)

Eq. (16.4-306)

\(3.0\)

1141

CMNL

\(C_{\Delta \text{P,Na}}\)

16.4.3.5

Eq. (16.4-94)

Eq. (16.4-95)

Eq. (16.4-96)

\(4.6 \cdot 10^{-10}\)

1142

CDNL

\(k_{\text{nl}}\)

16.4.3.10.1.14

Eq. (16.4-343)

\(50\)

1144

CDVG

\(k_{\text{Mi}}\)

16.4.3.10.1.14

Eq. (16.4-344)

\(0.067\)

1146

CFNACN

16.4.3.10.1.14

Eq. (16.4-345)

\(6.0 \cdot 10^{4}\)

1147

CFNAEV

16.4.3.10.1.14

Eq. (16.4-344)

\(6.0 \cdot 10^{5}\)

1148

FIFNGB

Eq. (14.2-18)

\(0.1\)

1150

VIVG

\(\mu_{\text{vg}}\)

16.4.3.8.1

Eq. (14.2-18)

\(0.1\)

1151

EGFUSO

\(H_{\text{fu,so}}\)

16.5.3.1

Eq. (16.5-2)

\(1.0 \cdot 10^{6}\)

1155

C1VIPR

\(3.0 \cdot 10^{-3}\)

1157

SUFU

\(\sigma_{\text{fu}}\)

16.4.3.8.1

Eq. (16.4-170)

\(0.45\)

1161

EGBBLY

\(H_{\text{fu,freeze}}\)

16.5.3.1

Eq. (16.5-1)

Fuel freezing is initiated when the fuel enthalpy drops below EGBBLY should be between EGFUSO and EGFULQ.

1162

VIFULQ

\(\mu_{\text{fu}}\)

16.4.3.10.1.2

Eq. (16.4-284)

1164

DTPLIN

16.7.3

\(2.5 \cdot 10^{-5}\)

1165

AXMX

16.4.2

Eq. (16.4-1) etc.

Cross sectional area of subassembly, limited by the outside perimeter

1166

EPCH

14.3.2

Eq. (14.2-1)

\(1\)

1168

DTPLP

16.7

The frequency of the LEVITATE output should be selected by the user.

1169

FNMELT

Eq. (14.2-2)

Eq. (14.2-3)

\(0.9\)

1170

CIRTFS

Eq. (14.2-21)

\(16.67\)

1174

CIANIN

16.4.3.9.2

\(0.5\)

1175

TEFAIL

Eq. (14.3-11)

\(\text{TESOL(1)}\)

1176

FNARME

Eq. (14.3-10)

FSPEC

FNARME should be consistent with FSPEC when the input controlled failure propagation is used. However, a compromise might be necessary because FSPEC is channel dependent while FNARME is not.

1177

PRFAIL

Eq. (14.3-13)

\(0\)

1188

CMFU

Eq. (14.2-40)

\(6.0 \cdot 10^{-11}\)

1195

CDCL

\(k_{\text{se}}\)

Eq. (16.5-41)

Eq. (16.5-42)

\(32.0\)

1198

RHSLBT

\(\rho_{\text{Nl}, \text{ls}}\)

14.4.6.3

\(728\)

This is the liquid sodium density at about 1200 K.

1199

RHSLTP

\(\rho_{\text{Nl}, \text{us}}\)

14.4.6.3

\(0.975 * \text{RHSLBT}\)

1206

RHSSLQ

\(6.10^{3}\)

This is the density of the steel entrapped in the frozen fuel crust. It is used in LEFREZ to determine the volume of the newly formed crust.

1207

CIBBDI

16.4.3.9.1

\(0.2\)

1208

CIANDI

16.4.3.9.2

\(0.1\)

1210

EGSESO

\(8.834 \cdot 10^{6}\)

Used in the functions \(T \left( h \right)\) and \(H_{\text{se}} \left( t \right)\). Should correspond to the steel solidus temperature TME.

1211

EGSELQ

\(\text{EGSESO} + \text{UEMELT(1)}\)

Used in the functions \(T_{\text{se}}\) left( h right)` and \(H_{\text{se}} \left( T \right)\). Should correspond to the steel liquidus temperature TME + DETEMS.

1212

CPSE

\(c_{\text{p,se}}\)

16.4.3.10.1.8

Eq. (16.4-319)

\(774.0\)

1213

FRMRSE

16.5.3.2

Eq. (16.5-17)

\(0.5\)

1215

RHSSSO

\(6.95 \cdot 10^{-3}\)

1216

RGFV

\(R_{\text{fv}}\)

16.4.3.6

Eq. (16.4-101)

Eq. (16.4-118)

\(31\)

1217

RGSV

\(R_{\text{sv}}\)

16.4.3.7

\(148\)

1229

FNDISR

16.2.3

Eq. (16.2-1)

\(0.9\)

1231

SRFMLE

\(1.0\)

This input value maintains the sodium in the structure film when initiating LEVITATE. If SRFMLE = 0 the film on the structure is ignored.

1280

ASRALU

16.4.3.9.3

\(1\)

The aspect ratio of solid chunks, defined as \(L/2R\).

1284

RALUDI

16.4.3.9.3

\(0.0\)

This is the radius of the chunks generated by disruption of the fuel pin. If 0.0, the code will determine the appropriate radius using the local geometry.

1285

RALUFZ

16.4.3.9.3

\(0.0\)

This is the radius of the chunks generated by the frozen crust break-up and bulk fuel freezing. If 0.0, the code will determine the appropriate radius using the local geometry.

Block 51, INPCHN

71

NRPI1

\(\text{NPIN}\)

All pins are assumed to fail coherently.

72

NRPI2

\(0\)

This input constant should be zero whenever NRP11 = NPIN is desired.

182

IMOMEN

16.4.3.8.1

16.4.3.8.2

Eq. (16.4-157)

Eq. (16.4-193)

\(0\)

Block 65, FUELIN

2

FMELTM

14.1.2

\(0.2\)

19

FCFAIL

\(0.0\)

The molten fuel cavity pressure calculated by DEFORM will be used.