9.7. References¶
9-1. D. L. Porter, C. E. Lahm, R. G. Pahl, “Fuel Constituent Redistribution during the Early Stages of U-Pu-Zr Irradiation,” Metallurgical Transactions A, Vol. 21, pp. 1871-1876, (1990).
9-2. R. G. Pahl, C. E. Lahm, S. L. Hayes, “Performance of HT9 Clad Metallic Fuel at High Temperature,” Journal of Nuclear Materials, Vol. 204, pp. 141-147, (1993).
9-3. A. B. Cohen, H. Tsai, L. A. Neimark, “Fuel/cladding Compatibility in U-19Pu-10Zr/HT9-clad Fuel at Elevated Temperatures,” Journal of Nuclear Materials, Vol. 204, pp. 244-251, (1993).
9-4. R. D. Mariani et al., “Lanthanides in Metallic Fuels: Their Behavior and Methods for Their Control,” Journal of Nuclear Materials, Vol. 419, pp. 263-271, (2011).
9-5. K. Inagaki, T. Ogata, “Reaction of Lanthanide Elements with Fe-Cr Alloys,” Journal of Nuclear Materials, Vol. 441, pp. 574-578, (2013).
9-6. K. Nakamura, T. Ogata, M. Kurata, A. Itoh, M. Akabori, “Reaction of U-Zr Alloy with Fe and Fe-Cr Alloy,” Journal of Nuclear Materials, Vol. 275, pp. 246-254, (1999).
9-7. K. Nakamura, T. Ogata, M. Kurata, T. Yokoo, M. A. Mignanelli, “Reactions of Uranium-Plutonium Alloys with Iron,” Journal of Nuclear Science and Technology, Vol. 38, No. 2, pp. 112-119, (2001).
9-8. T. H. Bauer, G. R. Fenske, J. M. Kramer, “Cladding Failure Margins for Metallic Fuel in the Integral Fast Reactor,” SMIRT Intl. Conf. on Structural Mechanics in Reactor Tech., CONF-870812-22, Switzerland, (1987).
9-9. T. Ogata, T. Yokoo, “Development and Validation of ALFUS: An Irradiation Behavior Analysis Code for Metallic Fast Reactor Fuels,” Nuclear Technology, Vol. 128, pp. 113-123, (1999).
9-10. C. B. Lee, D. H. Kim, Y. H. Jung, “Fission Gas Release and Swelling Model of Metallic Fast Reactor Fuel,” Journal of Nuclear Materials, Vol. 288, pp.29-42, (2001).
9-11. A. Karahan, “Modeling of Thermo-Mechanical and Irradiation Behavior of Metallic and Oxide Fuels for Sodium Fast Reactors,” Ph. D. Thesis, The Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, (2009).
9-12. A. Karahan, N. C. Andrews, “Extended Fuel Swelling Models and Ultra High Burn-up Fuel Behavior of U-Pu-Zr Metallic Fuel Using FEAST-METAL,” Nuclear Engineering and Design, Vol. 258, pp. 26-34, (2013).
9-13. Y. Tsuoi, T. Ogata, M. Kinoshita, H. Saito, “Mechanistic Model of Fission Gas Behavior in Metallic Fuel,” Journal of Nuclear Materials, Vol. 188, pp. 312-318, (1992).
9-14. D. R. Olander, “Fundamental Aspects of Nuclear Reactor Fuel Elements,” Report # TID-26711-P1, United States of America, (1976).
9-15. G. L. HOFMAN et al., “Swelling Behavior of U-Pu-Zr Fuel,” Metall. Trans. Vol 21A, p. 517, (1990).
9-16. T. H. Bauer, J. W. Holland, “In-Pile Measurement of Thermal Conductivity of Irradiated Metal Fuel,” Nuclear Technology, Vol. 110, pp. 407-421, (1995).
9-17. R. P. Anantatmula et al. “Sodium Compatibility of HT-9 and Fe-9Cr-1Mo Steels,” HEDL-SA-2801FP, (1985).
9-19. J. M. Kramer, R. J. DiMelfi, “An Evaluation of Transient Fuel Pin Cladding Failure Criteria for Application to Inherently Safe LMFBRs,” ANL/RAS 84-6, Reactor Analysis and Safety Division, Argonne National Laboratory, (1984).
9-20. G. Eggeler, et al., “Microstructural Study of Creep Rupture in a 12% Chromium Ferritic Steel,” Acta Metall., Vol. 37, No. 1, pp. 49-60, (1989).
9-21. J. R. Rice, “Constraints on the Diffusive Cavitation of Isolated Grain Boundary Facets in Creeping Polycrystals,” Acta Metall., Vol. 29, pp. 675-681, (1981).
9-22. G. L. Hofman et al., “Metal Fuels Handbook,” ANL-IFR-29, Argonne National Laboratory, (1985).
9-23. L. Leibowitz, R. A. Blomquist, “Thermal Conductivity and Thermal Expansion of Stainless Steels D9 and HT9,” International Journal of Thermophysics, Vol. 9, No. 5, (1988).
9-24. S. M. McDeavitt, A. A. Solomon, “Hot-isostatic Pressing of U-10Zr by a coupled Grain Boundary Diffusion and Creep Cavitation Mechanism,” Journal of Nuclear Materials, Vol. 228, pp. 184-200, (1996).
9-25. T. H. Bauer et al., “First Overpower Tests of Metallic IFR Fuel in TREAT: Data and Analysis from Tests M5, M6, and M7,” ANL-IFR-124, Reactor Analysis and Safety Division, Argonne National Laboratory, (1989)
9-26. J. M. Kramer, Y. Y. Liu, M. C. Billone, and H. C. Tsai, “Modeling the Behavior of Metallic Fast Reactor Fuels during Extended Transients,” Journal of Nuclear Materials, Vol. 204, pp. 203-211, (1993).
9-27. Kim, Y. S, et al., “Modeling of Constituent Redistribution in U-Pu-Zr Metal Fuel,” Journal of Nuclear Materials, Vol. 359, pp. 17-28, (2006).
9-28. T. Kobayashi et al., “Development of the SESAME Metallic Fuel Performance Code,” Nuclear Technology, Vol. 89, pp. 183-193, (1990).
9-29. L. Leibowitz, R. A. Blomquist, “Thermal Conductivity and Thermal Expansion of Stainless Steels D9 and HT9,” International Journal of Thermophysics, Vol. 9, No. 5, (1988).
9-30. L. L. Briggs, et al., “Safety Analysis and Technical Basis for Establishing an Interim Burnup Limit for Mark-V and Mark-VA Fueled Subassemblies in EBR-II, ” ANL-NSE-1, Argonne National Laboratory, (2018).
9-31. B. J. Makenas, “Swelling of 316 Stainless Steel and D9 Cladding in FFTF,” CONF860605—45, (1986).
9-32. M. C. Billone et al., “Status of the Fuel Element modeling Codes for Metallic Fuels,” Proc. Int. Conf. Reliable Fuels for Liquid Metal Reactors, American Nuclear Society, Tucson, Arizona, (1986).