5.16.1. Appendix 5.1: IHX Matrix Coefficients

The coefficients in Eq. (5.4-44) for the j-th vertical section of the shell in terms of the quantities defined in Section 5.4.2.2 are as follows:

(5.16-1)a1(j)=(ρc)SHdSH+θ2SΔtHS(j)+θ2SΔt(hA)snkPS
(5.16-2)a2(j)=12θ2SΔtHS(j)
(5.16-3)a3(j)=12θ2SΔtHS(j)
(5.16-4)a4(j)=ΔtHS(j)TSH3(j)+ΔtHS(j)¯TCS3(j)+Δt(hA)snk[TsnkTSH3(j)]PS
(5.16-5)¯TCP3(j)=12[TCS3(j)+TCS3(j+1)]

where

θ2S = the degree of implicitness for the shell-side coolant channel

Δt = the time interval

The coefficients in Eq. (5.4-45) for the j-th vertical section of the shell-side coolant for normal flow (downward) are:

(5.16-6)e1(j)=12Ac¯ρCS(j)¯cCS(j)+Δt¯cCS(j)Δz(j)θ2S|wS4|+ΔtPSHS(j)12θ2S+ΔtSPSTHST(j)12θ2S
(5.16-7)e2(j)=0
(5.16-8)e3(j)=ΔtPSHS(j)θ2S
(5.16-9)e4(j)=0
(5.16-10)e5(j)=ΔtSPSTHST(j)θ2S
(5.16-11)e6(j)=0
(5.16-12)e7(j)=12ACS¯ρCS(j)¯cCS(j)Δt¯cCS(j)Δz(j)θ2S| wS4|+ΔtPSHS(j)12θ2S+ΔtSPSTHST(j)12θ2S
(5.16-13)e8(j)=Δt¯cCS(j)Δz(j){θ1S| wS3|+θ2S|wS4|[TCS3(j)TCS3(j+1)]}+ΔtPSHS(j){TSH3(j)12[TCS3(j)+TCS3(j+1)]}+ΔtSPSHST(j){TTU3(j)12[TCS3(j)+TCS3(j+1)]}

The same coefficients for reversed flow (upward) in the shell-side coolant channel are:

(5.16-14)e(j)=12ACS¯ρCS(j1)¯cCS(j1)+Δt¯cCS(j1)Δz(j1)θ2S|wS4|+ΔtPSHS(j1)12θ2S+ΔtSPSTHST(j1)12θ2S
(5.16-15)e2(j)=ΔtPSHS(j1)θ2S
(5.16-16)e3(j)=0
(5.16-17)e4(j)=ΔtSPSTHST(j1)θ2S
(5.16-18)e5(j)=0
(5.16-19)e6(j)=12ACS¯ρCS(j1)¯cCS(j1)Δt¯cCS(j1)Δz(j1)θ2S|wS4|+ΔtPSHS(j1)12θ2S+ΔtSPSTHST(j1)12θ2S
(5.16-20)e7(j)=0
(5.16-21)e8(j)=Δt¯cCS(j1)Δz(j1){(θ1S|wS3|+θ2S|wS4|)[TCS3(j)TCS3(j1)]}+ΔtPSHS(j1){TSS3(j1)12[TCS3(j1)+TCS3(j)]}+ΔtSPST(j1){TTU3(j1)12[TCS3(j1)+TCS3(j)]}

The terms e9(j) and e10(j) have been added to Eq. (5.4-45) because they appear during the solution of the simultaneous equations. These arrays are set to zero before the solution is begun.

In addition, the boundary conditions for normal shell-side coolant channel flow are

(5.16-22)e1(jm)=1;e2,3,4,5,6,7(jm)=0;e8(jm)=ΔTCS(jm)

For reversed primary channel flow, they are

(5.16-23)e1(1)=1;e2,3,4,5,6,7(1)=0;quade8(1)=ΔTCS(1)

and for both cases, they are

(5.16-24)e2(1)=0;e4(1)=0;e6(1)=0e3(jm)=0;e5(jm)=0;e7(jm)=0

The coefficients in Eq. (5.4-46) for the j-th vertical section of the tube are:

(5.16-25)c1(j)=(ρc)TU12(PST+PTT)dTU+Δtθ2SPSTHST(j)+ΔtθSTPTTHTT(j)
(5.16-26)c2(j)=12Δtθ2SPSTHST(j)
(5.16-27)c3(j)=12Δtθ2SPSTHST(j)
(5.16-28)c4(j)=12Δtθ2TPTTHTT(j)
(5.16-29)c5(j)=12Δtθ2TPTTHTT(j)
(5.16-30)c6(j)=Δt[PSTHST(j)+PTTHTT(j)]TTU3(j)+ΔtPSTHST(j)12[TCS3(j)+TCS3(j+1)]+ΔtPTTHTT(j)12[TCT3(j)+TCT3(j+1)]

The coefficients in Eq. (5.4-47) for the j-th vertical section of the tube-side coolant for normal flow (upward) are:

(5.16-31)f1(j)=12ACT¯ρCT(j1)¯cCT(j1)+Δt¯cCT(j1)Δz(j1)S|wT4|θ2T+ΔtPTTHTT(j1)12θ2T
(5.16-32)f2(j)=ΔtPTTHTT(j1)θ2T
(5.16-33)f3(j)=0
(5.16-34)f4(j)=12ACT¯ρCT(j1)Δt¯cCT(j1)Δz(j1)S|wT4|θ2T+ΔtPTTHTT(j1)12θ2T
(5.16-35)f5(j)=0
(5.16-36)f6(j)=Δt¯cCT(j1)Δz(j1)S{(|wT3|θ1T+|wT4|θ2T)[TCT3(j)TCT3(j1)]}+ΔtPTTHTT(j1){TTU3(j1)12[TCT3(j1)+TCT3(j)]}

The same coefficients for reversed flow (downward) in the intermediate coolant channel are:

(5.16-37)f1(j)=12ACT¯ρCT(j)¯cCT(j)+Δt¯cI(j)Δz(j)S| wT4|θ2T+ΔtPTTHTT(j)θ2T
(5.16-38)f2(j)=0
(5.16-39)f3(j)=ΔtPTTHTT(j)θ2T
(5.16-40)f4(j)=0
(5.16-41)f5(j)=12ACT¯ρCT(j)¯cCT(j)Δt¯cCT(j)Δz(j)S| wT4|θ2T+ΔtPTTHTT(j)12θ2T
(5.16-42)f6(j)=Δt¯cCT(j)Δz(j)S{(|wT3|θ1T+|wT4|θ2T)[TCT3(j)TCT3(j+1)]}+ΔtPTTHTT(j){TTU3(j)12[TCT3(j)+TCT3(j+1)]}

The terms for f7(j) and f8(j) have been added to Eq. (5.4-47) because they appear during the solution of the simultaneous equations. These arrays are also set to zero before the solution is begun.

Also, the boundary conditions for normal tube-side coolant channel flow are

(5.16-43)f1(1)=1;f2,3,4,5(1)=0;f6(1)=ΔTCT(1)

For reversed tube-side channel flow, they are

(5.16-44)f1(jmax

and for both cases, they are

(5.16-45)\begin{split}f_{2}\left( 1 \right) = 0; &\quad f_{4}\left( 1 \right) = 0; \\ f_{1}\left( j\max \right) = 0; &\quad f_{5}\left( j\max \right) = 0\end{split}