5.16.1. Appendix 5.1: IHX Matrix Coefficients
The coefficients in Eq. (5.4-44) for the j-th vertical section of the
shell in terms of the quantities defined in Section 5.4.2.2 are as
follows:
(5.16-1)a1(j)=(ρc)SHdSH+θ2SΔtHS(j)+θ2SΔt(hA)snkPS
(5.16-2)a2(j)=−12θ2SΔtHS(j)
(5.16-3)a3(j)=−12θ2SΔtHS(j)
(5.16-4)a4(j)=−ΔtHS(j)TSH3(j)+ΔtHS(j)¯TCS3(j)+Δt(hA)snk[Tsnk−TSH3(j)]PS
(5.16-5)¯TCP3(j)=12[TCS3(j)+TCS3(j+1)]
where
θ2S = the degree of implicitness for the shell-side
coolant channel
Δt = the time interval
The coefficients in Eq. (5.4-45) for the j-th vertical section of the
shell-side coolant for normal flow (downward) are:
(5.16-6)e1(j)=12Ac¯ρCS(j)¯cCS(j)+Δt¯cCS(j)Δz(j)θ2S|wS4|+ΔtPSHS(j)12θ2S+ΔtSPSTHST(j)12θ2S
(5.16-7)e2(j)=0
(5.16-8)e3(j)=−ΔtPSHS(j)θ2S
(5.16-9)e4(j)=0
(5.16-10)e5(j)=−ΔtSPSTHST(j)θ2S
(5.16-11)e6(j)=0
(5.16-12)e7(j)=12ACS¯ρCS(j)¯cCS(j)−Δt¯cCS(j)Δz(j)θ2S| wS4|+ΔtPSHS(j)12θ2S+ΔtSPSTHST(j)12θ2S
(5.16-13)e8(j)=−Δt¯cCS(j)Δz(j){θ1S| wS3|+θ2S|wS4|[TCS3(j)−TCS3(j+1)]}+ΔtPSHS(j){TSH3(j)−12[TCS3(j)+TCS3(j+1)]}+ΔtSPSHST(j){TTU3(j)−12[TCS3(j)+TCS3(j+1)]}
The same coefficients for reversed flow (upward) in the shell-side
coolant channel are:
(5.16-14)e(j)=12ACS¯ρCS(j−1)¯cCS(j−1)+Δt¯cCS(j−1)Δz(j−1)θ2S|wS4|+ΔtPSHS(j−1)12θ2S+ΔtSPSTHST(j−1)12θ2S
(5.16-15)e2(j)=−ΔtPSHS(j−1)θ2S
(5.16-16)e3(j)=0
(5.16-17)e4(j)=−ΔtSPSTHST(j−1)θ2S
(5.16-18)e5(j)=0
(5.16-19)e6(j)=12ACS¯ρCS(j−1)¯cCS(j−1)−Δt¯cCS(j−1)Δz(j−1)θ2S|wS4|+ΔtPSHS(j−1)12θ2S+ΔtSPSTHST(j−1)12θ2S
(5.16-20)e7(j)=0
(5.16-21)e8(j)=−Δt¯cCS(j−1)Δz(j−1){(θ1S|wS3|+θ2S|wS4|)[TCS3(j)−TCS3(j−1)]}+ΔtPSHS(j−1){TSS3(j−1)−12[TCS3(j−1)+TCS3(j)]}+ΔtSPST(j−1){TTU3(j−1)−12[TCS3(j−1)+TCS3(j)]}
The terms e9(j) and e10(j) have been added
to Eq. (5.4-45) because they appear during the solution of the
simultaneous equations. These arrays are set to zero before the solution
is begun.
In addition, the boundary conditions for normal shell-side coolant
channel flow are
(5.16-22)e1(jm)=1;e2,3,4,5,6,7(jm)=0;e8(jm)=ΔTCS(jm)
For reversed primary channel flow, they are
(5.16-23)e1(1)=1;e2,3,4,5,6,7(1)=0;quade8(1)=ΔTCS(1)
and for both cases, they are
(5.16-24)e2(1)=0;e4(1)=0;e6(1)=0e3(jm)=0;e5(jm)=0;e7(jm)=0
The coefficients in Eq. (5.4-46) for the j-th vertical section of the
tube are:
(5.16-25)c1(j)=(ρc)TU12(PST+PTT)dTU+Δtθ2SPSTHST(j)+ΔtθSTPTTHTT(j)
(5.16-26)c2(j)=−12Δtθ2SPSTHST(j)
(5.16-27)c3(j)=−12Δtθ2SPSTHST(j)
(5.16-28)c4(j)=−12Δtθ2TPTTHTT(j)
(5.16-29)c5(j)=−12Δtθ2TPTTHTT(j)
(5.16-30)c6(j)=−Δt[PSTHST(j)+PTTHTT(j)]TTU3(j)+ΔtPSTHST(j)12[TCS3(j)+TCS3(j+1)]+ΔtPTTHTT(j)12[TCT3(j)+TCT3(j+1)]
The coefficients in Eq. (5.4-47) for the j-th vertical section of the
tube-side coolant for normal flow (upward) are:
(5.16-31)f1(j)=12ACT¯ρCT(j−1)¯cCT(j−1)+Δt¯cCT(j−1)Δz(j−1)S|wT4|θ2T+ΔtPTTHTT(j−1)12θ2T
(5.16-32)f2(j)=−ΔtPTTHTT(j−1)θ2T
(5.16-33)f3(j)=0
(5.16-34)f4(j)=12ACT¯ρCT(j−1)−Δt¯cCT(j−1)Δz(j−1)S|wT4|θ2T+ΔtPTTHTT(j−1)12θ2T
(5.16-35)f5(j)=0
(5.16-36)f6(j)=−Δt¯cCT(j−1)Δz(j−1)S{(|wT3|θ1T+|wT4|θ2T)[TCT3(j)−TCT3(j−1)]}+ΔtPTTHTT(j−1){TTU3(j−1)−12[TCT3(j−1)+TCT3(j)]}
The same coefficients for reversed flow (downward) in the intermediate
coolant channel are:
(5.16-37)f1(j)=12ACT¯ρCT(j)¯cCT(j)+Δt¯cI(j)Δz(j)S| wT4|θ2T+ΔtPTTHTT(j)θ2T
(5.16-38)f2(j)=0
(5.16-39)f3(j)=−ΔtPTTHTT(j)θ2T
(5.16-40)f4(j)=0
(5.16-41)f5(j)=12ACT¯ρCT(j)¯cCT(j)−Δt¯cCT(j)Δz(j)S| wT4|θ2T+ΔtPTTHTT(j)12θ2T
(5.16-42)f6(j)=−Δt¯cCT(j)Δz(j)S{(|wT3|θ1T+|wT4|θ2T)[TCT3(j)−TCT3(j+1)]}+ΔtPTTHTT(j){TTU3(j)−12[TCT3(j)+TCT3(j+1)]}
The terms for f7(j) and f8(j) have been
added to Eq. (5.4-47) because they appear during the solution of the
simultaneous equations. These arrays are also set to zero before the
solution is begun.
Also, the boundary conditions for normal tube-side coolant channel flow
are
(5.16-43)f1(1)=1;f2,3,4,5(1)=0;f6(1)=ΔTCT(1)
For reversed tube-side channel flow, they are
(5.16-44)f1(jmax
and for both cases, they are
(5.16-45)\begin{split}f_{2}\left( 1 \right) = 0; &\quad f_{4}\left( 1 \right) = 0; \\
f_{1}\left( j\max \right) = 0; &\quad f_{5}\left( j\max \right) = 0\end{split}