8.8. References
8-1. D.R. MacFarlane, Ed., “SAS1A, A Computer Code for the Analysis of Fast Reactor Power and Flow Transients,” ANL-7606, Argonne National Laboratory, October 1970.
8-2. F.E. Dunn, et al., “The SAS2A LMFBR Accident Analysis Computer Code,” ANL-8138, Argonne National Laboratory, October 1974.
8-3. F.E. Dunn, et al, Unpublished information, Argonne National Laboratory, 1975.
8-4. J.E. Cahalan and D.R. Ferguson, Ed., Unpublished information, Argonne National Laboratory, 1977.
8-5. Energy Research and Development Administration, Unpublished information, 1977.
8-6. M. Bober and G. Schumacher, “Material Transport in the Temperature Gradient of Fast Reactor Fuels,” Adv. Nucl. Sci. Tech., vol. 7, p. 121-196, 1973.
8-7. C.F. Clement, “The Movement of Lenticular Pores in UO2 Nuclear Fuel Elements,” J. Nucl. Mat., vol. 68, p. 63-68, 1977.
8-8. W.F. Lackey, F.J. Homan, A.R. Olsen, “Porosity and Actinide Redistribution During Irradiation of (U Pu) O2,” Nucl. Technol., vol. 16, p. 120-142, 1972.
8-9. F.A. Nichols, “The Theory of Grain Growth in Porous Compacts,” Journal of Applied Physics, vol. 37, no. 13, p. 4599-4602, 1966.
8-10. R.N. Singh, “Isothermal Grain Growth Kinetics in Sintered Pellets,” J. Nucl. Mat., vol. 64, p. 174-178, 1977.
8-11. G.A. Reymann, Ed., “MATPRO-VERSION 10: A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior,” TREE-NUREG-1180, EG & G Idaho, Inc., 1978.
8-12. J.B. Ainscough, B.W. Oldfield and J.O. Ware, “Isothermal Grain Growth Kinetics in Sintered UO2 Pellets,” J. Nucl. Mat., vol. 49, p. 117-128, 1973-74.
8-13. J. Rest, Unpublished information, Argonne National Laboratory, 1978.
8-14. E.E. Gruber, “A Generalized Parametric Model for Transient Gas Release and Swelling in Oxide Fuels,” Nucl. Technol., vol. 35, p. 617-634, October 1977.
8-15. J. Weisman, et al., “Fission Gas Release from UO2 Fuel Rods with Time-Varying Power Histories,” Trans. Am. Nucl. Soc., vol. 12, p. 900, 1969.
8-16. J.A. Dearien, et. al. “FRAP-S2: A Computer Code for the Steady State Analysis of Oxide Fuel Rods,” TREE-NUREG-1107, EG & G Idaho, Inc., July 1977.
8-17. Hanford Engineering Development Laboratory, Unpublished information, 1971.
8-18. A.M. Ross, R.L. Stoute, “Heat Transfer Coefficients Between UO2 and Zircalloy 2,” AECL-1552, Atomic Energy of Canada, LTD, 1962.
8-19. G.R. Horn and F.E. Panisko, Unpublished information, Hanford Engineering Development Laboratory, 1972.
8-20. M. Knudsen, “The Kinetic Theory of Gases–Some Modern Aspects,” Methuen and Co, Ltd, 2nd Edition, 1946.
8-21. Lassmann and F. Pazdera, “URGAP, A Gap Conductance Model for Transient Conditions,” Water Reactor Fuel Element Performance Modeling, edited by J. Gittos, Applied Science Publishers, Chapter 3, pp. 97-113, 1983.
8-22. W.R. Bohl, et al., Unpublished information, Argonne National Laboratory, 1975.
8-23. C. Essig, et al., “Dynamic Behavior of RAPSODIE in Exceptional Transient Experiments, “CONF-850410, Proc. of the Intl. Topical Meeting on Fast Reactor Safety, Knoxville, Tennessee, p. 635, April 1985.
8-24. E. E. Gruber and J. M. Kramer, Unpublished information, Argonne National Laboratory, 1985.
8-25. L. C. Walter, B. R. Seidel, and J. H. Kittel, “Performance of Metallic Fuels and Blankets in Liquid-Metal Fast Breeder Reactors,” Nucl. Technol., vol. 65, p. 179, 1984.
8-26. B. R. Seidel and L. C. Walters, “EBR-II Metallic Driver Fuel - A Live Option,” J. Eng. Power, vol. 103, p. 612, 1981.
8-27. G. Birgersson, et al., Unpublished information, Argonne National Laboratory, 1983.
8-28. K. J. Miles, Jr. and Kalimullah, “The Inherent Safety Phenomenon of Fission-Gas Induced Axial Extrusion in Oxide and Metal Fueled LMFBRs,” CONF-850410, Proc. of the Intl. Topical Meeting on Fast Reactor Safety, Knoxville, Tennessee, p. 103, April 1985.
8-29. W. R. Robinson, et al., Unpublished information, Argonne National Laboratory, 1985.
8-30. F.E. Bard, Unpublished information, Hanford Engineering Development Laboratory, 1982.
8-31. D.S. Dutt, et al., Unpublished information, Hanford Engineering Development Laboratory, 1973.
8-32. S.Y. Ogawa, E.A. Lees and M.F. Lyons, “Power Reactor High Performance UO2 Program, Fuel Design Summary and Progress Status,” GEAP-5591, General Electric Company, 1968.
8-33. P. Verbeek and H. Hoppe, “COMETHE-IIIJ: A Computer Code for Predicting Mechanical and Thermal Behavior of a Fuel Pin, Part 1, General Description,” INBFR-107 (original report BN-7609-07, Belgonucleaire, Brussels, Belgium, 1977.
8-34. R.J. DiMelfi and J.M. Kramer, “Modeling the Effects of Fast-Neutron Irradiation on the Subsequent Mechanical Behavior of Type 316 Stainless Steel,” J. of Nucl. Mat., vol. 89, no. 2 & 3, pp. 338-346, 1980.
8-35. R.B. Baker, “Calibration of a Fuel-to-Cladding Gap Conductance Model for Fast Reactor Fuel Pins,” HEDL-TME-77-86, Hanford Engineering Development Laboratory, May 1978.
8-36. T. H. Hughes, Unpublished information, Argonne National Laboratory, 1985.
8-37. J. M. Kramer, private communication, October 1984.
8-38. D.R. Olander, “Fundamental Aspects of Nuclear Reactor Fuel Elements,” TID-26711-Pl, Energy Research and Development Administration, 1976.
8.39. N. Cautaerts, et al., “Thermal Creep Properties of Ti-Stabilized DIN 1.4970 (15-15Ti) Austenitic Stainless Steel Pressurized Cladding Tubes,” Journal of Nuclear Materials, Vol. 493, pp. 154-67, (2017).
8.40. J. L. Seran, et al., “Behavior under Neutron Irradiation of the 15-15Ti and EM10 Steels Used as Standard Materials of Phenix Fuel Assemblies,” ASTM STP 1125, pp. 1209-1233, (1992).
8.41. N. Miyaji, et al., “Post-irradiation Creep Rupture Properties of FBR grade 316 SS Structural Material,” Journal of Nuclear Materials, Vol. 271, pp. 173-178, (1999).
8.42. S. Ukai, et al., “In-reactor Creep Rupture Properties of 20% CW Modified 316 Stainless Steel,” Journal of Nuclear Materials, Vol. 278, pp. 320-327, (2000).
8.43. R. J. Puigh, et al., “In-Reactor Creep Rupture Behavior of the D19 and 316 Alloys,” Influence of Radiation on Material Properties: 13th International Symposium – Part II, ASTM STP 956, pp. 22-29, (1987).