13.6. Nomenclature

Symbol

Definition

Units

\(A_{\text{c}}\)

Moving cladding cross-sectional area

m2

\(\text{AFRV}\)

Input constant in single-phase friction factor formula, Eq. (13.2-5)

\(A_{\text{f}}\)

Total area allowed for cladding by the fuel

m2

\(A_{\text{max}}\)

Available area for molten cladding

m2

\(A_{\text{s}}\)

Refrozen steel cross-sectional area

m2

\(A_{\text{v}}\)

Vapor flow area

m2

\(a\)

Constant in viscosity Eq. (13.2-21)

K

\(\text{BFRV}\)

Input constant, see AFRV

\(b_{\text{f}}\)

Molten cladding/pin turbulent friction factor, Eq. (13.2-19)

\(C\)

Liquid-steel volumetric coefficient of thermal expansion, Eq. (13.2-47)

K-1

\(C_{\text{a}}\)

Mass convection term

kg/m-s

\(C_{\text{f}}\)

Terms in the outer-fuel-node energy Eq. (13.3-21)

W/m

\(C_{\text{m}}\)

Momentum convection term

m/s2

\(C_{\text{v}}\)

Energy convection term, Eq. (13.3-9)

W/m

\(C_{1}, C_{2}, C_{3}\)

Input constants in the correlation of liquid metal heat transfer,

\(c_{\text{f}}\)

Eq. (13.2-33)

\(c_{\text{pc}}\)

Coefficient of friction with fuel pin, Eq. (13.2-17)

\(c_{\text{pf}}\)

Molten cladding specific heat capacity

J/kg-K

\(c_{\text{ps}}\)

Fuel specific heat capacity

J/kg-K

\(D_{\text{c}}\)

Solid steel specific heat capacity

J/kg-K

\(D_{\text{c}}\)

Molten cladding hydraulic diameter

m

\(D_{\text{h}}\)

Hydraulic diameter for bare fuel or fuel pin

m

\(D_{\text{v}}\)

Hydraulic diameter for the vapor

m

\(e_{\text{c}}\)

Moving cladding internal energy

J/kg

\(e_{\text{c}}^{o}\)

Constant, Eq. (13.2-50)

J/kg

\(e_{\text{s}}\)

Refrozen steel internal energy

J/kg

\(F_{\text{p}}\)

Pin/molten-cladding friction force per unit volume of molten cladding

N/m3

\(F_{\text{v}}\)

Cladding/vapor interfacial force per unit volume of channel

N/m3

\(f\)

Melt fraction

\(\text{fps}\)

Full-power seconds from initial cladding motion

s

\(\left( \text{fps} \right)_{0}\)

Constant in incoherence factor on friction, Eq. (13.2-12)

s

\(f_{\text{sf}}\)

Single-phase friction factor for vapor

\(g\)

Gravitational constant

m/s2

\(h\)

Coefficient of heat transfer to the molten cladding from the solid interface

W/m2-K

\(I\)

Incoherence multiplier on friction

\(j\)

Index for axial segment

\(\Delta K\)

Reactivity change due to cladding relocation

δk/k

\(k_{\text{c}}\)

Molten cladding thermal conductivity

W/m-K

\(k_{\text{f}}\)

Fuel thermal conductivity

W/m-K

\(M\)

Friction multiplier due to flooding (M is also the total steel mass in channel)

\(m_{\text{j}}\)

Mass of cladding in segment \(j\)

kg

\(m_{\text{j}}^{o}\)

Initial mass of cladding in segment \(j\)

kg

\({\dot{m}}_{\text{c}}\)

Mass rate of cladding melting per unit length of channel

kg/m-s

\({\dot{m}}_{\text{v}}\)

Rate of vapor generation per unit length of channel

kg/m-s

\(n\)

Index for time step

\(P_{\text{e}}\)

Outer perimeter of intact cladding

m

\(P_{\text{r}}\)

Perimeter of the cladding solid/liquid interface

m

\(P/D\)

Pitch-to-diameter ratio for fuel pins

\(\frac{\partial\text{p}}{\partial\text{z}}\)

Channel axial pressure gradient

Pa/m

\(Q_{\text{j}}\)

Cumulative pin segment heat loss from beginning of heat transfer time step

J

\(Q_{\text{NT}}\)

Volumetric heat generation in outer fuel segment

W/m3

\(q\)

Input constant, Eq. (13.2-22)

\(\text{Re}\)

Molten cladding Reynolds number, Eq. (13.2-20)

\(\left( \text{Re} \right)_{\text{break}}\)

Turbulent transition Reynolds number, Eq. (13.2-18)

\(\left( \text{Re} \right)_{\text{v}}\)

Reynolds number for vapor

\(r\)

Radius (from fuel pin axis)

m

\(r_{\text{NR}}, r_{\text{NT}}\)

Fuel radii defined in Figure 13.3.1

m

\(\Delta r_{\text{c}}\)

Half-thickness of molten cladding layer

m

\(\Delta r_{\text{i}}\)

Half-thickness of the intact cladding

m

\(\Delta r_{\text{s}}\)

Half-thickness of the refrozen cladding

m

\(\Delta r_{\text{w}}\)

Half-thickness of the structure

m

\(T_{\text{c}}\)

Moving cladding temperature

K

\(T_{\text{f}}\)

Fuel surface temperature

K

\(T_{\text{i}}\)

Intact cladding temperature

K

\(T_{\text{m}}\)

Cladding melting temperature

K

\(T_{\text{ref}}\)

Reference temperature in density Eq. (13.2-46)

K

\(T_{\text{s}}\)

Refrozen cladding temperature

K

\(T_{\text{w}}\)

Structure temperature

K

\(t\)

Time

s

\(t^{*}\)

Time at beginning of current heat-transfer time step

s

\(\Delta t\)

CLAP (coolant) time step

s

\(\Delta t^{*}\)

Heat-transfer time step

s

\(v_{\text{c}}\)

Moving cladding velocity

m/s

\(v_{\text{flood}}\)

Flooding velocity

m/s

\(W_{\text{j}}\)

Cladding reactivity worth distribution

∂k/k-kg

\(w\)

Vapor mass flowrate

kg/s

\(w_{\text{j}}\)

Segment midpoint mass flow, Eq. (13.3-16)

kg/s

\(w_{\text{j}}^{*}\)

Segment boundary mass flow, Eq. (13.3-10)

kg/s

\(w_{\text{m,j}}\)

Segment mean mass flow, Eq. (13.3-11)

kg/s

\(x\)

Constant in incoherence factor on friction, Eq. (13.2-12)

\(y_{1}, y_{2}\)

Constants in linearized pin friction equation

N/m3

\(z\)

Elevation

m

\(z_{\text{j}}\)

Segment boundary elevation

m

\(z_{\text{m,j}}\)

Nodal elevation, Eq. (13.3-15)

m

\(\Delta z_{\text{j}}\)

Segment length

m

\(\alpha\)

Vapor fraction based on area available for molten steel and vapor

\(\alpha_{\text{crit}}\)

Input constant in two-phase multiplier, Eq. (13.2-10)

\(\beta\)

Steel (solid) coefficient of linear thermal expansion, Eq. (13.2-46)

K-1

\(\Gamma\)

Factor in correction of cladding area for overfilled segments

m3

\(\gamma_{\text{c}}\)

Computer coefficient, Eq. (13.3-26)

\(\gamma_{\text{f}}\)

Computed coefficient, Eq. (13.3-23)

\(\varepsilon\)

Input constant in two-phase multiplier, Eq. (13.2-10)

\(\theta\)

Multiplier on heat loss to structure (usually = 1)

\(\lambda\)

Effective heat-of-fusion, Eq. (13.2-31)

J/kg

\(\lambda_{\text{o}}\)

Thermodynamic heat-of-fusion

J/kg

\(\mu_{\text{c}}\)

Moving cladding viscosity

Pa-s

\(\mu_{\text{m}}\)

Cladding viscosity at the liquidus temperature

Pa-s

\(\mu_{\text{s}}\)

Solid cladding pseudo-viscosity, Eq. (13.2-23)

Pa-s

\(\mu_{\text{t}}\)

Cladding viscosity at the solidus temperature

Pa-s

\(\mu_{\text{v}}\)

Vapor viscosity

Pa-s

\(\xi_{\text{f}}, \xi_{\text{w}}\)

Computed coefficients

\(\xi_{1}, \xi_{2}, \xi_{3}\)

Computed coefficients

\(\rho_{\text{c}}\)

Molten cladding density

kg/m3

\(\rho_{\text{c}}^{\circ}\)

Density of cladding at the liquidus temperature

kg/m3

\(\rho_{\text{f}}\)

Fuel density

kg/m3

\(\rho_{\text{s}}\)

Refrozen steel density

kg/m3

\(\rho_{\text{s}}^{\circ}\)

Solid cladding density at the reference temperature

kg/m3

\(\rho_{\text{v}}\)

Vapor density

kg/m3

\(\phi\)

Sensible heat flux from refrozen cladding to the molten interface

W/m2

\(\phi_{\text{c}}\)

Flux of sensible heat into the moving cladding layer

W/m2

\(\phi_{\text{hf}}\)

Fusion heat flux, Eq. (13.2-29)

W/m2

\(\phi_{\text{r}}\)

Heat flux at interface of intact and refrozen cladding

W/m2

\(\phi_{\text{trial}}\)

Trail heat flux, Eq. (13.2-43)

W/m2

\(\phi_{1}\)

Heat flux, Eq. (13.2-41)

W/m2

\(\phi_{2}\)

Heat flux, Eq. (13.2-42)

W/m2

\(\overline{\psi}\)

Mean ratio of thermal-to-momentum eddy diffusivities